Loading AI tools
来自维基百科,自由的百科全书
物理学中,劳仑兹协变性(英语:Lorentz covariance)是时空的一个关键性质,出自于狭义相对论,适用于全域性的场合。局域劳仑兹协变性(英语:Local Lorentz covariance)所指为仅“局域”于各点附近无限小时空区域的劳仑兹协变性,此则出于广义相对论。劳仑兹协变性有两个不同、但紧密关联的意义:
此条目没有列出任何参考或来源。 (2024年11月5日) |
注意到:“协变的”这个词汇的使用不应与概念上相关的“一个协变向量”有所混淆。在流形上,词汇“协变”与“逆变”指的是客体在广义座标变换下是采怎样的转变方式。较易造成混淆的一点是:协变与逆变四维矢量都可以是劳仑兹协变量。
一般来说,一个劳仑兹张量的本质可以利用它带有指标(含上、下标)的数量来辨识。若不带有指标则表示它是个纯量,若带有一个指标则表示它是个向量,同理类推。
请注意:闵可夫斯基度规的形式被规定为 ,这是参考了约翰·杰克森(John D. Jackson)的著作《经典电动力学》中所采用的形式。
时空间距:
静质量:
电磁学不变量:
达朗贝尔/波算符:
此外还有电荷和光速。
四维座标:
偏微分算符:
四维速度:
四维动量:
四维波矢:
四维力:
是功率密度。
如果 a=b, | |
如果 a≠b. |
如果 a = b = 0, | |
如果 a = b = 1,2,3 | |
如果 a ≠b. |
对偶电磁场张量:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.