Loading AI tools
来自维基百科,自由的百科全书
在数学中,格(英语:Lattice)是其非空有限子集都有一个上确界(称为并)和一个下确界(称为交)的偏序集合(poset)。格也可以特征化为满足特定公理恒等式的代数结构。因为两个定义是等价的,格理论从序理论和泛代数二者提取内容。半格包括了格,依次包括海廷代数和布尔代数。这些"格样式"的结构都允许序理论和抽象代数的描述。
需要注意的是,本条目介绍的是序理论中的“格”,并非几何与群论中的“格(群论)”(点阵),两者的英文均为“lattice”。虽然在继承自平面的次序中,每个点阵都是格,但是许多格不是点阵。[1]
考虑任意一个偏序集合(L,≤),如果对集合L中的任意元素a,b,使得a,b在L中存在最大下界和最小上界,则(L,≤)是一个格。(从此定义可看出,其并不要求如全序集合般的每二元素可比性,但仍要求每二元素有最大下界和最小上界)
这里对于取a,b的最大下界的操作用表示;
对于取a,b的最小上界操作用 表示。
有界格有一个最大元素和一个最小元素,按惯例分别指示为1和0(也叫做顶和底)。任何格都可以通过增加一个最大元素和最小元素而转换成有界格。
使用容易的归纳论证,你可以演绎出任何格的所有非空有限子集的上确界(并)和下确界(交)的存在。一个很重要的格的种类是完全格。一个格是完全的,如果它的所有子集都有一个交和一个并,这对比于上述格的定义,这里只要求所有非空有限子集的交和并的存在。
另一种定义格的方式是将格定义为一种代数结构。一个格是一个代数结构,其中和是定义在集合上的二元运算,且对于所有的满足:
从上述三个公理恒等式可以得出重要的:
幂等律: | , |
这些公理断言了(L,)和(L,)都是半格。吸收律是唯一交和并都出现了的公理,把格同一对半格区别开来并确保这两个半格正确的交互。特别是,每个半格都是另一个半格的对偶。“有界格”要求交和并都有一个零(neutral)元素,分别习惯叫做1和0。参见半格条目。
格与广群家族有一些联系。因为交和并都符合交换律和结合律。格可以看作由有相同的承载者的两个交换半群组成的。如果格是有界的,这些半群也是交换幺半群。吸收律是特定于格理论的唯一定义恒等式。
L 闭包于交和并之下,通过归纳,蕴涵了L的任何有限子集的交和并的存在性,有着一个例外:空集的交和并分别是最大元素和最小元素。所以格只在它是有界的条件下包含所有有限(包含空)交和并。为此有些作者定义格的时候要求0和1是L的成员。而以这种方式定义格不损失一般性,因为任何格都可以被嵌入一个有界格中,这里不接受这种定义。
格的代数解释在泛代数中扮演根本性角色。
格的代数定义蕴涵了序理论的定义,反之亦然。
明显的,序理论的格引发了两个二元运算和。容易看出这些运算使(L, , )变成代数意义上的格。反之亦真:考虑代数定义的格(M, , )。现在定义在M上的偏序≤如下,对于M中的元素x和y
或等价的
吸收律确保了两个定义实际上是等价的。你现在可以检查以这种方式介入的关系≤定义了在其中二元交和并是通过最初运算和而给出的一个偏序。反过来,由得出自上述序理论公式的代数定义的格(L, , )引发的次序一致于L的最初次序。
因为格的两个定义是等价的,你可以随意调用任何定义的适合你用的方面。
在两个格之间的适当的态射概念可以轻易的同上述代数定义得出。给定两个格(L, , )和(M, , ),格的同态是一个函数f : L → M使得
所以f是两个底层半格的同态。当考虑带有更多结构的格的时候,这个态射也应当注意这个额外结构。所以在两个有界格L和M之间的态射f还有下列性质:
在序理论公式中,这些条件只声称格的同态是保持二元交和并的一个函数。对于有界格,最小和最大元素的保持只是空集的并和交的保持。
格L的子格是L的非空子集,它是带有同L一样的交和并运算的格。就是说,如果L是一个格,而M是L的子集使得对于M中的所有元素对a, b有ab和ab在M中,则M是L的子格。[2]
格L的子格M是L的凸子格,如果x ≤ z ≤ y和x, y在M中蕴涵了z属于M,对于在L中的所有元素x, y, z。
设是含有格中的元素以及符号的逻辑命题,令是将中的替换为,将替换为,将替换为,将替换为后所得到的命题。则称是的对偶命题。
设是含有格中的元素以及符号的逻辑命题,若对于一切格为真,则的对偶命题也对于一切格为真。
可在线免费获得的专著:
Elementary texts recommended for those with limited mathematical maturity:
The standard contemporary introductory text:
The classic advanced monograph:
Free lattices are discussed in the following title, not primarily devoted to lattice theory:
The standard textbook on free lattices:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.