文氏电桥(英语:Wien bridge oscillator)也称为桥式正弦波振荡电路,是利用电阻与电容作为回授的一种电桥型振荡器,工作频率可达约几MHz左右。将输出接至一电阻( R 3 {\displaystyle R_{3}} )与电容( C 1 {\displaystyle C_{1}} )串联之电抗( X s {\displaystyle X_{s}} )串接一电阻( R 4 {\displaystyle R_{4}} )与电容( C 2 {\displaystyle C_{2}} )并联之电抗( X p {\displaystyle X_{p}} ),再将 X p {\displaystyle X_{p}} 之电压回授至输入端,此方式称为韦恩桥式震荡器或韦恩桥式震荡电路。 X s = R 4 − j X C 1 {\displaystyle X_{s}=R_{4}-jX_{C1}} X p = R 3 / / j X C 2 = R 3 ⋅ − j X C 2 R 3 − j X C 2 {\displaystyle X_{p}=R_{3}//jX_{C2}={R_{3}\cdot -jX_{C2} \over R_{3}-jX_{C2}}} 回授电路如下: β ( s ) = X p X s + X p {\displaystyle \beta (s)={X_{p} \over {X_{s}+X_{p}}}} = R 3 ⋅ − j X C 2 ( R 4 − j X c 1 ) ⋅ ( R 3 − j X C 2 ) + R 3 ⋅ − j X C 2 {\displaystyle ={R_{3}\cdot -jX_{C2} \over {(R_{4}-jX_{c1})\cdot (R_{3}-jX_{C2})+R_{3}\cdot -jX_{C2}}}} = R 3 X C 2 ( R 4 X C 2 + R 3 X C 1 + R 3 X C 2 ) + j ( R 3 R 4 − X C 1 X C 2 ) {\displaystyle ={R_{3}X_{C2} \over (R_{4}X_{C2}+R_{3}X_{C1}+R_{3}X_{C2})+j(R_{3}R_{4}-X_{C1}X_{C2})}} 利用巴克豪生准则,震荡时虚部为零,增益为1。 故虚部之 R 3 R 4 − X C 1 X C 2 = 0 {\displaystyle R_{3}R_{4}-X_{C1}X_{C2}=0} ; 回路增益 β A = R 3 X C 2 ( R 4 X C 2 + R 3 X C 1 + R 3 X C 2 ) ⋅ A = 1 {\displaystyle \beta A={R_{3}X_{C2} \over (R_{4}X_{C2}+R_{3}X_{C1}+R_{3}X_{C2})}\cdot A=1} 若 R 3 = R 4 = R {\displaystyle R_{3}=R_{4}=R} ; X C 1 = X C 2 = X {\displaystyle X_{C1}=X_{C2}=X} β = 1 3 {\displaystyle \beta ={1 \over 3}} 增益必须为 A = 3 {\displaystyle A=3} 始可满足振荡之要求。 Wikiwand - on Seamless Wikipedia browsing. On steroids.