来自维基百科,自由的百科全书
在量子力学中,宇称被描述成宇称变换中的量,以P (Parity) 表示。宇称变换(又称宇称倒装),是一个在一个三维座标系中其中一维的翻转(变换),在三维空间之内,它也可以是一个在x , y , z 轴中同时进行的变换(点反演)
因为宇称变换会将一个现象转化为其的镜像,所以宇称变换也可以被形容成一个测试左右手座标系的物理现象。在宇称变换之中,假设变换是在右手座标系,这样的变换在左手座标系看来就可以被认为是一个身分转换,反之亦然。 大部分的标准模型在宇称底下,都呈现宇称对称,但弱交互作用却会破坏这种对称性。 在任何一维的三维座标系下,P的矩阵的行列式 = -1 ,因此它与一个自转是不同的。相反地,在一个二维座标系下,两个在 x , y轴同时进行的变换就不会是一个宇称变换,而是一个 180° 的转动。
其同时具有负行列式以及能形成一个有效的宇称变换的能力。接著将上述两者组合抑或持续进行 x, y, z 轴的反射,就能复原先前所提及的特殊宇称变换。而因为第一个赋予的宇称变换具有正数的行列式,因此它在偶数维里不会作用。至于奇数维,只有后者的宇称变换示例(抑或奇数个座标的坐标系反射)才会成功作用。
. 那么必须有 ,因为整体相位不是一个可观测量。 由于整体相位属于量子系统的U(1)内禀对称性,我们可以将 等价于相位所对应的U(1)连续对称群的元素 . 我们总可以定义 为我们的宇称变换算符,而不是. 从而 并且有本征值. 在宇称变换下具有本征值的波函数被称为偶函数,而具有本征值的被称为奇函数.
粒子进入外势能的波函数是中心对称的(势能与空间反演不变量,与原点对称),要么保持不变,要么改变符号:这两种可能的状态被称为波函数的偶数态或奇数态[3]。粒子宇称守恒定律(对于核的β衰变[4]不成立)指出,如果一个孤立的粒子集合有一个确定的宇称,那么宇称在集合演化过程中保持不变。在球对称外场中运动的粒子的状态的奇偶性由角动量决定,粒子状态由三个量子数定义:总能量、角动量和角动量的投影[3]。
Seamless Wikipedia browsing. On steroids.