交错级数审敛法(Alternating series test)是证明无穷级数收敛的一种方法,最早由戈特弗里德·莱布尼茨发现,因此该方法通常也称为莱布尼茨判别法或莱布尼茨准则。 具有以下形式的级数 ∑ n = 0 ∞ ( − 1 ) n a n {\displaystyle \sum _{n=0}^{\infty }(-1)^{n}a_{n}\!} 其中所有的an 非负,被称作交错级数,如果当n趋于无穷时,数列an的极限存在且等于0,并且每个an小于或等于an-1(即,数列an是单调递减的),那么级数收敛.如果L是级数的和 ∑ n = 0 ∞ ( − 1 ) n a n = L {\displaystyle \sum _{n=0}^{\infty }(-1)^{n}a_{n}=L\!} 那么部分和 S k = ∑ n = 0 k ( − 1 ) n a n {\displaystyle S_{k}=\sum _{n=0}^{k}(-1)^{n}a_{n}\!} 逼近L有截断误差 | S k − L | ≤ | S k − S k − 1 | = a k {\displaystyle \left|S_{k}-L\right\vert \leq \left|S_{k}-S_{k-1}\right\vert =a_{k}\!} 证明 我们假设级数具有形式 ∑ n = 0 ∞ ( − 1 ) n a n {\displaystyle \sum _{n=0}^{\infty }(-1)^{n}a_{n}\!} .当 n {\displaystyle n} 趋于无穷时,数列 a n {\displaystyle a_{n}} 的极限等于0,并且每个 a n {\displaystyle a_{n}} 小于或等于 a n − 1 {\displaystyle a_{n-1}} (即 a n {\displaystyle a_{n}} 是单调递减数列).[1] 收敛性证明 给定数列前 ( 2 n + 1 ) {\displaystyle (2n+1)} 项的部分和 S 2 n + 1 = a 0 + ( − a 1 + a 2 ) + ( − a 3 + a 4 ) + … + ( − a 2 n − 1 + a 2 n ) − a 2 n + 1 {\displaystyle S_{2n+1}=a_{0}+\left({-a_{1}+a_{2}}\right)+\left({-a_{3}+a_{4}}\right)+\ldots +\left({-a_{2n-1}+a_{2n}}\right)-a_{2n+1}} .由于每个括号内的和非正,并且 a 2 n + 1 ≥ 0 {\displaystyle a_{2n+1}\geq 0} ,那么前 ( 2 n + 1 ) {\displaystyle (2n+1)} 项的部分和不大于 a 0 {\displaystyle a_{0}} . 并且每个部分和可写做 S 2 n + 1 = ( a 0 − a 1 ) + ( a 2 − a 3 ) + … + ( a 2 n − a 2 n + 1 ) {\displaystyle S_{2n+1}=\left({a_{0}-a_{1}}\right)+\left({a_{2}-a_{3}}\right)+\ldots +\left({a_{2n}-a_{2n+1}}\right)} .每个括号内的和非负.因此,级数 S 2 n + 1 {\displaystyle S_{2n+1}} 单调递增:对任何 n ∈ N {\displaystyle n\in N} 均有: S 2 n + 1 ≤ S 2 n + 3 {\displaystyle S_{2n+1}\leq S_{2n+3}} . 结合以上两段论述,由单调收敛定理可得,存在数 s {\displaystyle s} 使得 lim n → ∞ S 2 n + 1 = s {\displaystyle \lim _{n\to \infty }S_{2n+1}=s} . 由于 S 2 n = S 2 n + 1 − a 2 n + 1 {\displaystyle S_{2n}=S_{2n+1}-a_{2n+1}} 并且 lim n → ∞ a n = 0 {\displaystyle \lim _{n\to \infty }a_{n}=0} ,那么 lim n → ∞ S 2 n = s {\displaystyle \lim _{n\to \infty }S_{2n}=s} .给定数列的和为 lim n → ∞ S 2 n = lim n → ∞ S 2 n + 1 = s {\displaystyle \lim _{n\to \infty }S_{2n}=\lim _{n\to \infty }S_{2n+1}=s} ,其中 s {\displaystyle s} 为有限数,从而数列收敛. 部分和截断误差的证明 在收敛性的证明过程中,我们发现 S 2 n + 1 {\displaystyle S_{2n+1}} 是单调递增的.由于 S 2 n = a 0 + ( − a 1 + a 2 ) + … + ( − a 2 n − 1 + a 2 n ) {\displaystyle S_{2n}=a_{0}+\left(-a_{1}+a_{2}\right)+\ldots +\left(-a_{2n-1}+a_{2n}\right)} ,并且括号中的每一项是非正的,这样可知 S 2 n {\displaystyle S_{2n}} 是单调递减的.由先前的论述, lim n → ∞ S 2 n = L {\displaystyle \lim _{n\to \infty }S_{2n}=L} ,因此 S 2 n ≥ L {\displaystyle S_{2n}\geq L} .类似的,由于 S 2 n + 1 {\displaystyle S_{2n+1}} 是单调递增且收敛到 L {\displaystyle L} ,我们有 S 2 n + 1 ≤ L {\displaystyle S_{2n+1}\leq L} .因此我们有 S 2 n + 1 ≤ L ≤ S 2 n {\displaystyle S_{2n+1}\leq L\leq S_{2n}} 对所有的n均成立. 因此如果k是奇数我们有 | L − S k | = L − S k ≤ S k + 1 − S k = a k + 1 ≤ a k {\displaystyle |L-S_{k}|=L-S_{k}\leq S_{k+1}-S_{k}=a_{k+1}\leq a_{k}} ,而如果k是偶数我们有 | L − S k | = S k − L ≤ S k − S k − 1 = a k {\displaystyle |L-S_{k}|=S_{k}-L\leq S_{k}-S_{k-1}=a_{k}} . 参阅 狄利克雷判别法 图书资料 Knopp,Konrad,"Infinite Sequences and Series",Dover publications,Inc.,New York,1956.(§ 3.4) ISBN 0-486-60153-6 Whittaker,E.T.,and Watson,G.N.,A Course in Modern Analysis,fourth edition,Cambridge University Press,1963.(§ 2.3) ISBN 0-521-58807-3 Last,Philip,"Sequences and Series",New Science,Dublin,1979.(§ 3.4) ISBN 0-286-53154-3 参考文献 [1]Beklemishev, Dmitry V. Analytic geometry and linear algebra course 10. FIZMATLIT. 2005. Wikiwand - on Seamless Wikipedia browsing. On steroids.