在抽象代数中,一个群的交换子(commutator)或换位子是一个二元运算子。设g及h 是 群G中的元素,他们的交换子是g −1 h −1 gh,常记为[ g, h ]。只有当g和h符合交换律(即gh = hg)时他们的交换子才是这个群的单位元。
| 此条目 没有列出任何参考或来源。 (2020年3月8日) |
一个群G的全部交换子生成的子群叫做群G的导群,记作D(G)。
群G中两个元素g和h的交换子为元素
- [g, h] = g−1h−1gh
它等于群的幺元当且仅当g和h可交换(即gh = hg)。
量子力学中,经常用到对易关系(commutation relation),即
- ;
其中;、均为量子力学的算符,是其对易算符,也称交换子。
如果上式等于零,则称、是对易的,即意味着和两个算符的运算顺序可以调换。反之则称非对易的,运算顺序不可以调换。
量子力学中,交换子有以下特性:
量子力学中的各个力学量之间,常用的对易关系有:
以下,是位置算符、是动量算符、是角动量算符(包括轨道角动量、自旋角动量等),而是克罗内克δ、是列维-奇维塔符号。其中i、j、k均可以指代x、y、z三个方向中的任意一个。
更多信息 , ...
对易关系 |
更具体的形式
|
|
、
|
|
、
|
|
、、、
|
|
、、
|
关闭
相对于量子力学,古典物理中所有可观测量都可对易(交换),而交换算符会是零;然而仍然有类似的关系存在:需将交换子换成泊松括号,且常数换成:
这样的观察导致了保罗·狄拉克提出假设:一般来说,古典的观测量其量子对应项应满足
- 。
于1927年,赫尔曼·外尔(Hermann Weyl)指出了量子算符与相空间中古典分布之间的对应关系并不成立。不过他倒是提出了一个机制,称作魏尔量子化(Weyl quantization),为了一种称作形变量子化(deformation quantization)的量子化方法提供了数学途径。