在几何学中,第九星形二十面体是一种星形二十面体,即正二十面体的星形化体,为正二十面体的面向外延伸并相交所形成的第九种立体[1],其外观为12个向外突出的五角锥状尖刺[2][3]。虽然称为二十面体,但其外观为由20组3个分离的鸢形构成[4]。有两种均匀多面体的对偶多面体外观与第九星形二十面体相同,分别为大三角六边形二十面体(大双三斜三十二面体的对偶多面体)与内侧三角六边形二十面体(双三斜十二面体的对偶多面体)[5][6],其在外观上无法区别。在温尼尔的著作《对偶模型》(Dual Models)中,将第九星形二十面体描述为外观与《多面体模型》提到的大三角六边形二十面体和内侧三角六边形二十面体相同[7]:42。在《五十九种二十面体》中亦无明确提及其属于哪一个立体,但可以根据前后文判断出其指的是大三角六边形二十面体与内侧三角六边形二十面体的其中之一,由于有两种外观相同的立体,也因此其中一种与之外观相同的立体有时被描述为“遗失的星形二十面体”。[8][9]
构成
第九星形二十面体在杜瓦记号中可以用De2f2来表示,[10]这代表其包含了星形二十面体中的D胞、e2胞和f2胞,即从中间数来的第3、第6和第8个胞。[11]
面的组成
大三角六边形二十面体
大三角六边形二十面体是大双三斜三十二面体的对偶多面体,在对偶模型中,其编号为U47。其由20个自相交的六边形(外观为三角星)组成,共有20个面、60条边和32个顶点。在其32个顶点中,有12个顶点在立体外部,20个顶点隐没在立体内部。[5]
其面的六边形交错地由2种角构成,分别为和。六个角的内角和是而非一般六边形的,因为这格形状绕行其几何中心2圈。其二面角为。
内侧三角六边形二十面体
内侧三角六边形二十面体是双三斜十二面体的对偶多面体,在对偶模型中,其编号为U41。其由20个等边六边形组成,共有20个面、60条边和24个顶点。在其24个顶点中,有12个顶点在立体外部,12个顶点隐没在立体内部。[6]
其面的六边形交错地由2种角构成,分别为和,由于没有自相交的情形,其内角和同于一般的六边形。其二面角为。
内侧三角六边形二十面体与大三角六边形二十面体不同。内侧三角六边形二十面体在拓朴学终能对应到一个抽象的正多面体,相当于五阶六边形镶嵌的商空间,其可以将作为内侧三角六边形二十面体中的凹六边形面进行拓朴变形成正六边形而构造出五阶六边形镶嵌,因此在另外一个索引中也被看作是一种抽象的正多面体[12]:
相关多面体
最外层的胞为f2的星形二十面体皆会有相近的形状。单纯由f2胞所组成的立体为由12个分离的五方偏方面体结构所组成。[13][14]其包含了星形二十面体的第7与第8胞。[15]
-
组成f2星形二十面体的五方偏方面体
-
f2的星状图
f2的星形二十面体是一个分离的几何结构,而若将每个分离结构的最内侧顶点互相连接,则其将变成一个单一的立体。由于其包括了星形二十面体的核心胞,因此这种立体在杜瓦记号中可以用Af2表示。[16]由于这种立体并未收录于《五十九种二十面体》中,因此又被描述为“遗失的二十面体”[17]
-
Af2星形二十面体
-
Af2的星状图
Df2星形二十面体外观为六复合五方偏方面体与f2星形二十面体的组合,是《五十九种二十面体》中所提到米勒规则的反例。这个立体最早由布里奇(N.J. Bridge)于在其著作中说明,[18]后来被收录于盖伊(Inchbald, Guy)的《遗失的二十面体》中。[17]
-
f2星形二十面体
-
Df2星形二十面体
- 其他f2星形二十面体
参见
- 《五十九种二十面体》
参考文献
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.