在几何学中,截对角偏方面体是一种多面体,可以透过将偏方面体截去上下两个顶点构成,并具备二面体群对称性[1]。它的命名方式是根据上下两个面的形状而命名的,例如:正十二面体可以视为是截对角正五方偏方面体,它的上下两个面都是正五边形,其他的面也是五边形;[2]:251截对角四方偏方面体的上下两个面则是正方形或四边形,其他的面则是五边形,依此类推。部分的截对角偏方面体可以作为化学的分子笼结构。[3]
Quick Facts 类别, 对偶多面体 ...
截对角偏方面体以正十二面体作为截对角五方偏方面体为例 |
类别 | 截对角偏方面体 |
---|
对偶多面体 | 双锥反柱体 |
---|
|
面 | |
---|
边 | |
---|
顶点 | |
---|
欧拉特征数 | F=, E=, V= (χ=2) |
---|
|
面的种类 | 2n个五边形,2个n边形 |
---|
|
对称群 | Dnd, [2+,2n], (2*n), 阶数 4n |
---|
旋转对称群
| Dn, [2,2n]+, (22n), 阶数 2n |
---|
|
凸 |
注:为底面边数 。 |
|
Close
Katrina Biele, Yuan Feng, David Heras, Ahmed Tadde. Associating Finite Groups with Dessins d’Enfants (PDF). Purdue Research in Mathematics Experience (PRiME), Department of Mathematics, Purdue University. 2013 [2021-10-23]. (原始内容存档 (PDF)于2021-10-23).
Alsina, C. and Nelsen, R.B. A Mathematical Space Odyssey: Solid Geometry in the 21st Century. Dolciani Mathematical Expositions. Mathematical Association of America. 2015. ISBN 9781614442165.
Weitzel, Hans, A further hypothesis on the polyhedron of A. Dürer's engraving Melencolia I, Historia Mathematica, 2004, 31 (1): 11–14, doi:10.1016/S0315-0860(03)00029-6
Diudea, M.V. and Nagy, C.L. Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics. Springer Netherlands. 2013. ISBN 9789400763715.
Wang, Dong and Cherkaev, Andrej and Osting, Braxton. Dynamics and stationary configurations of heterogeneous foams. PloS one (Public Library of Science). 2019, 14 (4): e0215836.
Șerban, D. A., Sărăndan, S., Negru, R., Belgiu, G., & Marşavina, L., A Parametric Study of the Mechanical Properties of Open-Cell Kelvin Structures, IOP Conference Series: Materials Science and Engineering 416 (1) (IOP Publishing), 2018, 416 (1): 012108