康达效应(英语:Coandă effect)即附壁效应[1],又译宽德康德柯恩达效应,简言之,是射流附着在凸面上的倾向[2][3]

Thumb
旋转的乒乓球因为康德效应而悬浮在空中:球停留在气流的下缘,气压梯度力与重力相抵销,而让球维持平衡高度。

宽德效应详言之,是当喷流(射流)流经曲面时,流体(水流或气流)与它流过的物体表面之间有表面摩擦,近物体表面的流体流速会减缓,近面流体离开原本的流动方向,改为随著凸出的物体表面流动之倾向,并使周围远面流体逸入此一喷流中;由于流体流速的减缓和移动方向的改变(流线弯曲)使得喷流外界的压力(大气压力)大于喷流内侧和曲面交界处的压力,因此喷流依附在曲面壁流动。喷流的附壁效应,会使曲面壁上的压力小于喷流外界的大气压力,而产生向曲面壁的吸力,此称附壁吸力(Coandă force)。

宽德效应是以罗马尼亚发明家安利·宽德为名。宽德发明的一架飞机(宽德-1910)曾经因这种效应坠毁,之后他便致力这方面的研究。[4][5]

发现

1800年,汤玛士·杨格在一场皇家学会的演讲中,提出了对康德效应的描述:

使蜡烛火焰往风管的气流靠拢的侧压,与气流通过障碍物时产生弯折的压力,很可能是一样的原理所造成。如果把一股气流在水面吹起的涟漪做标记,并且在气流的侧边放置一个凸面体,可以发现气流往凸面体的方向弯折了;如果凸面体是可以自由移动的话,还能发现它稍微往气流移动。

一百年后,亨利·康德在他的Coandă-1910英语Coandă-1910型飞机实验中应用了这个效应。

示范实验

康德效应可以用小气流柱和乒乓球来示范。将吸尘器的管口往上倾斜一个角度,使气流从乒乓球上表面附近通过,当气流强度适中时,乒乓球的重力和其所受气压梯度力将可以平衡、让球浮在半空中。一个对康德效应常见的误解是水龙头的水通过汤匙背面时,汤匙会被拉进水流中的这个现象也属于康德效应。[6]乒乓球的例子不同之处,在于水流汤匙是在不同的相态中(液态和气态),逸入水流的空气其实相当稀少。汤匙之所以会往水流靠拢主要是表面张力的作用。[7]康德效应的例子还有:在一根点燃的蜡烛前放置罐子,对罐子吹气,气流可以将罐子后方的蜡烛吹熄。

在空气动力学中的应用

附壁作用是大部分飞机机翼的主要运作原理。附壁作用的突然消失是飞机失速的主要原因。

部分飞机特别使用引擎吹出的气流来增加附壁作用,用以提高升力。美国波音的YC-14 及前苏联安-72都是把喷射发动机装在机翼上方的前面,配合襟翼,吹出的气流可以提高低速时机翼的升力。波音C-17环球霸王III亦有透过附壁作用增加升力,但所产生的升力较少。

直升机“无尾旋翼”英语NOTAR(英语:No Tail Rotor)技术,亦是透过吹出空气在机尾引起附壁作用,造成推力平衡主旋翼产生的反扭矩

参考文献

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.