Loading AI tools
来自维基百科,自由的百科全书
平面上的闭曲线关于某个点的卷绕数(Winding number),是一个整数,它表示了曲线绕过该点的总次数。卷绕数与曲线的定向有关,如果曲线依顺时针方向绕过某个点,则卷绕数是负数。
假设在xy平面上有一条有向的闭曲线。我们可以把曲线想象为某个物体的运动轨迹,运动方向就是曲线的方向。曲线的卷绕数就是物体逆时针绕过原点的总次数。
计算绕过原点的总次数时,逆时针方向的运动算正数,顺时针方向的运动算负数。例如,如果物体首先依逆时针方向绕过原点四次,然后再依顺时针方向绕过原点一次,那么曲线的卷绕数就是3。
利用这种方案,根本不绕过原点的曲线的卷绕数就是零,而顺时针绕过原点的曲线的卷绕数就是负数。因此,曲线的卷绕数可以是任何整数。以下的图中显示了卷绕数为-2、-1、0、1、2和3的曲线:
−2 | −1 | 0 | ||
1 | 2 | 3 |
x-y平面上的曲线可以用参数方程来定义:
如果我们把参数t视为时间,那么这个方程就描述了物体在t = 0和t = 1期间在平面上的运动。只要函数x(t)和y(t)是连续的,运动的轨迹就是一条曲线。只要物体的位置于t = 0和t = 1时相同,这条曲线就是闭曲线。
我们可以用极坐标系来定义这种曲线的卷绕数。假设曲线不经过原点,我们可以把参数方程写成极坐标的形式:
函数r(t)和θ(t)必须是连续的, r > 0。因为最初和最终的位置是相同的,所以θ(0)和θ(1)的差必须是2π的整数倍。这个整数就是卷绕数:
这个公式定义了xy平面上曲线关于原点的卷绕数。把坐标系平移,我们就可以把这个定义推广到关于任何点p的卷绕数。
卷绕数在不同的数学领域中通常有不同的定义。以下的定义都与上面的定义等价。
在微分几何中,通常假设参数方程是可微的(或至少分段可微的)。在这种情况下,极坐标系θ与直角坐标系x和y有以下的关系:
根据微积分基本定理,θ的总变化等于dθ的积分。因此,我们可以把可微曲线的卷绕数表示为一个曲线积分:
在复分析中,闭曲线C的卷绕数可以表示为复数坐标z = x + iy。特别地,如果我们记z = reiθ,那么:
因此:
ln(r)的总变化是零,因此dz ⁄ z的积分等于i乘以θ的总变化。所以:
更加一般地,C关于任何复数a的卷绕数由以下的公式给出:
我们也可以考虑曲线关于它本身的卷绕数(又称为回转数,turning number),也就是曲线的切向量旋转的次数。在右面的图中,曲线的回转数是4(或−4),那个小的回路也计算在内。这只对可微且光滑的曲线才有定义。参见:回转切线定理。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.