Loading AI tools
機率分布 来自维基百科,自由的百科全书
卡方分布(英语:chi-square distribution[2], χ²-distribution,或写作χ²分布)是概率论与统计学中常用的一种概率分布。k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布。卡方分布是一种特殊的伽玛分布,是统计推论中应用最为广泛的概率分布之一,例如假说检定和置信区间的计算。
由卡方分布延伸出来皮尔森卡方检定常用于:
若k个随机变量、……、是相互独立且符合标准正态分布的随机变量(数学期望为0、方差为1),则随机变量Z的平方和
被称为服从自由度为 k 的卡方分布,记作
可以在文章右上角的表中看到更多卡方分布的性质。
卡方分布的概率密度函数为:
其中,当时。这里Γ代表Gamma函数。
卡方分布的累积分布函数为:
其中γ(k,z)为不完全Γ函数
在大多数涉及卡方分布的书中都会提供它的累积分布函数的对照表。此外许多表格计算软件如OpenOffice.org Calc和Microsoft Excel中都包括卡方分布函数。
自由度为k的卡方变量的平均值是k,方差是2k。 卡方分布是伽玛分布的一个特例,它的熵为:
其中是双伽玛函数。
当Gamma变数 频率(λ)为1/2时,α的2倍为卡方变数之自由度。 即:
卡方变数之期望值=自由度 卡方变数之方差=两倍自由度
由定义可得,独立卡方变量之和同样服从卡方分布。特别地,若分别独立服从自由度为的卡方分布,那么它们的和服从自由度为的卡方分布。
若k个随机变量、……、是相互独立,符合标准正态分布的随机变量,则它们与均值之间偏差的平方和
其中均值
它的平方正比于自由度为1的卡方分布,即
p-value = 1- p_CDF.
χ2越大,p-value越小,则可信度越高。通常用p=0.05作为阈值,即95%的可信度。
常用的χ2与p-value表如下:
自由度k \ P value (概率) | 0.95 | 0.90 | 0.80 | 0.70 | 0.50 | 0.30 | 0.20 | 0.10 | 0.05 | 0.01 | 0.001 |
---|---|---|---|---|---|---|---|---|---|---|---|
1
|
0.004 | 0.02 | 0.06 | 0.15 | 0.46 | 1.07 | 1.64 | 2.71 | 3.84 | 6.64 | 10.83 |
2
|
0.10 | 0.21 | 0.45 | 0.71 | 1.39 | 2.41 | 3.22 | 4.60 | 5.99 | 9.21 | 13.82 |
3
|
0.35 | 0.58 | 1.01 | 1.42 | 2.37 | 3.66 | 4.64 | 6.25 | 7.82 | 11.34 | 16.27 |
4
|
0.71 | 1.06 | 1.65 | 2.20 | 3.36 | 4.88 | 5.99 | 7.78 | 9.49 | 13.28 | 18.47 |
5
|
1.14 | 1.61 | 2.34 | 3.00 | 4.35 | 6.06 | 7.29 | 9.24 | 11.07 | 15.09 | 20.52 |
6
|
1.63 | 2.20 | 3.07 | 3.83 | 5.35 | 7.23 | 8.56 | 10.64 | 12.59 | 16.81 | 22.46 |
7
|
2.17 | 2.83 | 3.82 | 4.67 | 6.35 | 8.38 | 9.80 | 12.02 | 14.07 | 18.48 | 24.32 |
8
|
2.73 | 3.49 | 4.59 | 5.53 | 7.34 | 9.52 | 11.03 | 13.36 | 15.51 | 20.09 | 26.12 |
9
|
3.32 | 4.17 | 5.38 | 6.39 | 8.34 | 10.66 | 12.24 | 14.68 | 16.92 | 21.67 | 27.88 |
10
|
3.94 | 4.86 | 6.18 | 7.27 | 9.34 | 11.78 | 13.44 | 15.99 | 18.31 | 23.21 | 29.59 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.