立方图

来自维基百科,自由的百科全书

立方图

图论中,若一个的每个顶点度数均为三,则称其为立方图(Cubic graph)、3-正则图三次图

彼得森图是立方图
完全二分图 是立方二分图

彼得森图汤玛森图等都是立方图。

对称性

1932年,Ronald M. Foster英语R. M. Foster首先寻找立方对称图英语Symmetric graph的例子,并收集为Foster census英语Foster census[1]许多著名的图都是立方对称图,如汤玛森图彼得森图等。威廉·汤玛斯·图特用满足下列性质的最大整数s来对立方对称图进行分类:图的自同构群在其所有长度为s的路径(其中不能有重复的边)组成的集合上作用是传递的。他证明了s最大只能取5,也即s的可能值是1到5。[2]

图着色与独立集

根据布鲁克定理,除了K4以外的任何连通立方图都可以用至多三种颜色染色。也即,这样的连通立方图至少存在一个包含n/3个顶点的独立集,其中n是该图的顶点数。

根据Vizing定理,任一立方图的边色数英语Edge chromatic number只能为三或四。3-边着色又称Tait-着色,Tait-着色方式将边集分割为三个完美匹配。根据Kőnig's_theorem英语Kőnig%27s_theorem_(graph_theory)每个二分立方图都有一个Tait-着色。

哈密顿回路

关于立方图是否具有哈密顿回路有许多研究。1880年,P.G. Tait英语Peter Tait (physicist)猜想任一立方多面体图都有哈密顿回路。1946年,威廉·汤玛斯·图特提出了Tait猜想英语Tait's conjecture的反例,有46个点的图特图英语Tutte graph。1971年,图特猜想所有的二分立方图都有哈密顿回路。然而Joseph Horton提出了图特猜想的反例,有96个点的Horton图英语Horton graph[3]在这之后,Mark Ellingham英语Mark Ellingham又提出了两个反例:Ellingham–Horton图英语Ellingham–Horton graph[4][5]Barnette猜想英语Barnette's conjecture(目前仍是猜想)将Tait猜想与图特猜想结合起来,称任一二分立方多面体图都有哈密顿回路。当一个立方图有哈密顿回路时,可以使用LCF表示法英语LCF notation简洁地表示。

如果从所有阶立方图中随机选取一个,那么它有相当大概率有哈密顿回路:当趋近于无穷时,这个概率趋近于1。[6]

David Eppstein英语David Eppstein猜想任一阶立方图最多有(约等于)条不同的哈密顿回路,且给出了极限情况下的例子。[7]目前为止,得到证明的最佳估计为[8]

另见

参考文献

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.