为了研究傅里叶级数的收敛性质,只需研究相应的狄利克雷核的性质。狄利克雷核的一个重要特征,是当n趋于正无穷时,Dn的L1范数也趋于正无穷,并且有:
狄利克雷核的缺乏一致收敛性质,是导致很多傅里叶级数发散的原因。比如,运用狄利克雷核与一致有界原理,可以证明连续函数的傅里叶级数甚至不一定逐点收敛。参见傅里叶级数的收敛。
上文中的三角恒等式
可以用等比数列的求和公式得到:首先
因此有:
在式中将分子和分母各乘 r−1/2,便有:
当r = eix 时就有:
等式当 时,即对于不是整数倍的x 成立。
对于为整数倍的x,由于 在对应点的极限是2n+1
因此可以将表达式延伸为连续函数,使得等式对任意x都成立。
- 狄利克雷核是一个三角多项式,因此是无穷阶可导的周期函数;
- 狄利克雷核是偶函数;
- 狄利克雷核的平均值是1;
- 在正无穷处的平均值为:
- Andrew M. Bruckner, Judith B. Bruckner, Brian S. Thomson: Real Analysis. ClassicalRealAnalysis.com 1996, ISBN 0-13-458886-X, S.620 (vollständige Online-Version (Google Books))
- Podkorytov, A. N. (1988), "Asymptotic behavior of the Dirichlet kernel of Fourier sums with respect to a polygon". Journal of Soviet Mathematics, 42(2): 1640–1646. doi: 10.1007/BF01665052
- Levi, H. (1974), "A geometric construction of the Dirichlet kernel". Transactions of the New York Academy of Sciences, 36: 640–643. doi: 10.1111/j.2164-0947.1974.tb03023.x
- Hazewinkel, Michiel (编), Dirichlet kernel, 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4
- Dirichlet-Kernel[失效链接] at PlanetMath[永久失效链接]