在數學裡的範疇論中,極限(英語:Limit)的概念融貫了多種構造,包括和、積等等;範疇論中許多泛性質也可從極限來理解。 極限分為極限與餘極限(又稱上極限),彼此的定義相對偶。在不同場合的別名及英譯如下表: 本條目用語取歸納極限與射影極限。 一範疇 C 中的極限及上極限可用 C 中的圖示來定義。形式上,C
的完备化。 可以证明,这个完备化同构与序列 { G / H 4 } {\displaystyle \{G/H_{4}\}} 的逆向极限(英语:inverselimit)同构。 如果 H {\displaystyle H} 是个共尾序列(即任何有限的正规子群均包含某个 H r {\displaystyle
(其中n互质于域特征)系数,平展上同调表现尚可,但对于无挠系数则无法给出良好的结果。为了得到无挠的上同调群,我们需要取带某些挠元系数的平展上同调群的逆极限(英语:Inverselimit),而这种构造所得到的结构称为ℓ进上同调群。(此处ℓ代表一个与域特征p不同的质数。)对于一个概形V,考虑上同调群 H i ( V , Z