物联网(英语:Internet of Things,简称IoT)是一种计算设备、机械、数字机器相互关系的系统,具备通用唯一识别码(UUID),并具有通过网络传输数据的能力,无需人与人、或是人与设备的交互[1][2][3]。
物联网将现实世界数字化,应用范围十分广泛。物联网可拉近分散的资料,统整物与物的数字信息。物联网的应用领域主要包括以下方面:运输和物流、工业制造[4]、健康医疗、智能环境(家庭、办公、工厂)、个人和社会领域等[5]。
物联网为受各界瞩目的新兴领域,但安全性是物联网应用受到各界质疑的主要因素[6],主要的质疑在于物联网技术正在快速发展中,但其中涉及的安全性挑战,与可能需要的法规变更等,目前均相当欠缺[7][8]。
历史
物联网的概念可以追溯到1980年代初期,全球第一台隐含物联网概念的设备为位于卡内基·梅隆大学的可乐贩卖机,它连接到互联网,可以在网络上检查库存,以确认还可供应的饮料数量[9][10]。马克·维瑟(Mark Weiser)于1991年发表了“21世纪的电脑”(The Computer of the 21st Century)论文,当中揭橥普及计算的概念,为物联网的发展拓展了重要的道路[11]。
雷扎·拉吉(Reza Raji)1994年在IEEE综览中发表“可控制的智能网络”(Smart networks for control)论文,当中提出了概念“可将小量的数据数据包汇集至一个大的节点,这样就可以集成与自动化各种设施,从家用电器乃至于整座工厂”[12]。
在1993年至1997年之间,几家公司提出了多种解决方案,例如Microsoft at Work、Novell NEST。比尔·乔伊(Bill Joy)1999年在世界经济论坛上提出六网(Six Webs)架构,其中第六项“D2D,Device to Device”描绘了物联网更具体的发展构想[13]。
最早提出“物联网(Internet of things)”这个名称的人可能已经很难断定,但任职于宝洁公司的前瞻技术开发者凯文·阿什顿(Kevin Ashton)说,他自己应该是最早明确使用“物联网”名称的人,1999年他在宝洁公司所做一次演讲的标题即为“Internet of things”[14]。他并表示,相较于“Internet of things”,他自己更喜欢“Internet for things”这个名称[15]。当时,他认为射频识别对于物联网至关重要[16],这将使电脑可以管理所有个别物体[17]。
思科系统认为物联网仅为一个“时间点”的概念,这个时间点出现在“连上互联网的事物或对象,大于连上网络的人数”,换句话说这是物联网的诞生时间。思科系统估计这个“时间点”大约落在2008年至2009年之间,“上网对象/上网人数”的比例在2003年为0.08,到了2010年为1.84[18]。
部分人士认为金属氧化物半导体场效晶体管(MOSFET)技术的进步是促成物联网快速发展的推手。主要的论点在于MOSFET到了21世纪制程已可微缩至纳米等级,大幅降低了功耗,而低功耗设计正是物联网中的传感器可否被广泛运用的关键因素[19]。除了MOSFET之外,绝缘层上覆硅(silicon-on-insulator)与多核心处理器技术的发展,也是促成物联网普及的原因[19].
技术
技术路线(Technology Roadmap)指对于技术未来发展方向的预测。在物联网领域,广泛被各国政府与机构引用[20][21][22]的技术路线为顾问公司SRI Consulting描绘之物联网技术路线,其依据时间轴可分为四个阶段:供应链辅助、垂直市场应用、无所不在的寻址(Ubiquitous positioning),最后可以达到“The Physical Web”(意即让物联网上的每一个智能设备都以URL来标示)[23]。
物联网的架构一般分为三层或四层。三层之架构由底层至上层依序为感测层、网络层与应用层[24];四层之架构由底层至上层依序为感知设备层(或称感测层)、网络连接层(或称网络层)、平台工具层与应用服务层。三层与四层架构之差异,在于四层将三层之“应用层”拆分成“平台工具层”与“应用服务层”,对于软件应用做更细致的区分[25]。
物联网的实现,需要给每一个连上物联网的对象分配唯一的标识或地址。最早的概念是由射频识别标签和电子产品代码所发展出来的[26]。现在物联网与互联网链接后,由于预估需要大量的IP地址,目前主流的IPv4地址空间有限,因此物联网中的对象倾向使用下一代互联网协议(IPv6),以提供足够的地址空间,IPv6对于物联网的发展扮演重要角色[27]。
物联网有多种联网技术可供选择,依照有效传输距离可区分为短距离无线、中距离无线、长距离无线,以及有线技术:
- 蓝牙网状网络(Bluetooth mesh networking)– 规范采用蓝牙技术的网状网络,可增加节点数,并提供标准化的应用层[28]。
- 光照上网技术(Li-Fi)– 与Wi-Fi标准相似的无线通信技术,但使用可见光通信以增加带宽[29]。
- 近场通信(Near-field communication,NFC)– 使两个电子设备能够在4公分范围内进行通信的通信协议[30]。
- 射频识别(Radio-frequency identification,RFID)– 使用电磁场访问射频识别(RFID)标签中数据的技术[31]。
- Wi-Fi – 基于IEEE 802.11标准的无线局域网技术[32]。
- ZigBee – 基于IEEE 802.15.4标准的个人网通信协议,具有低功耗,低数据速率,低成本的特性[33]。
- Z-Wave – 主要应用于智能家庭和安全应用的无线通信协议[34]。
应用层在物联网四层架构中可再细分为“平台工具层”与“应用服务层”。平台工具层为底层的软件平台,作为应用服务层与网络层的接口,以支持各类的软件应用。可归类于“平台工具层”包括大数据、区块链、软件定义网络、软件定义存储、软件定义数据中心、安全通信、杀毒软件、人工智能相关(如自然语言处理、深度学习、语音识别、模式识别、电脑视觉...)等;应用服务层针对不同的应用需求,直接呈现原始资料,或经过加值处理,借由人机界面提供用户,或是对应的硬件/软件目标得到想要的信息。可归类于“应用服务层”包括虚拟现实/增强现实、人机交互、服务导向架构、永续发展相关(生命周期评估、节能、碳足迹...)等[25]。
在应用层中,通常使用多种编程语言撰写应用程序,使用HTTPS与OAuth之协议。在平台后端使用各种形式的数据库系统,例如时间序列数据或是后端数据存储系统(如Cassandra、PostgreSQL等)[41]。
大多数的物联网系统均是建构在云计算之上,在云当中具备事件队列(event queuing)与消息传递系统,这些系统可以处理在各层级中所需要的通信[42]。一些专家将工业物联网(IIoT)中的三层分类为边缘、平台和企业,它们分别透过邻近网络、接入网络和服务网络来连接[43]。
美国国家标准暨技术研究院(NIST)对于云计算的定义中,将服务模式分为软件即服务(SaaS)、平台即服务(PaaS)、基础设施即服务(IaaS)三种[44]。
智能物联网(AIoT)为物联网与人工智能的结合,以实现更高效率的物联网运作,改善人机交流、增强数据管理和分析。人工智能可用于将物联网数据转化为有用的信息,以改善决策流程,从而为“物联网资料即服务”(IoT Data as a Service,IoTDaaS)的模式奠定基础[45]。
智能物联网的出现,对于物联网与人工智能两者均会产生变革,增加彼此之间的价值。因为人工智能通过机器学习功能,使得物联网变得更有价值;而物联网通过连接、信号和数据交换,使得人工智能可以获得更丰富的资料来源。随着物联网遍及许多行业,将有越来越多的人为的、以及机器生成的非结构化资料,智能物联网可在资料分析中提供有力的支持,在各行各业中创造新的价值[45]。
应用
有越来越多的物联网设备可供消费者选用,包括联网的车辆、家庭自动化、联网的可穿戴设备、联网的健康监控设备,以及远程监控设备[46]。
苹果公司的HomeKit为该公司之智能家庭平台,用户可以透过iPhone、iPad、Apple Watch等设备的APP接口,或是由Siri语音控制支持Apple HomeKit标准的家用设备,如电视、电灯、空调、水龙头等[47],目前支持28类设备[48]。其他类似、但功能与范围不尽相同的产品包括Google的Google Nest与Google个人助理、Amazon的Amazon Echo与Amazon Alexa、三星的SmartThings、小米的小爱同学、联想的Lenovo Smart Assistant等[49]。另外还有一些开放平台如OpenHAB、Domoticz等[50][51]。
另一项主要的应用为辅助老年人与残疾人士[52],例如语音控制可以帮助行动不便人士,警报系统可以连接至听障人士的人工耳蜗[53],另外还有监视跌倒或癫痫等紧急情况的传感器[54],这些智能家庭技术可以提供用户更多的自由和更高的生活质量[52]。
物联网在工业的应用称为工业物联网(Industrial internet of things,IIoT)。工业物联网专注于机器对机器(Machine to Machine,M2M)的通信,利用大数据、人工智能、云计算等技术,让工业运作有更高的效率和可靠度。工业物联网涵盖了整个工业应用,包括了机器人、医疗设备和软件定义生产流程等,为第四次工业革命中,产业转型至工业4.0中不可或缺的一部分[55]。
大数据分析在生产设备的预防性维护中扮演关键角色,其核心为信息物理系统。可透过5C“连接(Connection)、转换(Conversion)、联网(Cyber),认知(Cognition)、配置(Configuration)”之架构来设计信息物理系统,将收集来的数据转化为有用的资料,并藉以优化生产流程[56]。
物联网在农业中的应用包括收集温度、降水、湿度、风速、病虫害和土壤成分的数据,并加以分析与运用。这样的方式称为精准农业,其利用决策支持系统,将收集来的数据做出精准分析,藉以提高产出的质量和数量,并减少浪费[57]。
2018年8月,丰田通商与微软、近畿大学水产研究所合作,利用Microsoft Azure的物联网应用包,开发出于水产养殖辅助系统。水产养殖为劳力密集的工作,鱼苗必须由人工进行分类,以确保每条鱼的大小适当且无畸形。借由辅助系统的导入,可以大幅减轻人力负担,将有经验的人移至更高附加价值的工作[58][59]。
医疗物联网(Internet of Medical Things,IoMT)为物联网应用于医疗保健,包括数据收集、分析、研究与监控方面的应用,用以建立数字化的医疗保健系统[60][61][62][63]。物联网设备可用于激活远程健康监控和紧急情况通知系统,包括简易的设施如血压计、便携式生理监视器,至可监测植入人体的设备,如心律调节器、人工耳蜗等[64]。世界卫生组织规划利用移动设备收集医疗保健数据,并进行统计、分析,创建“m-health”体系[65]。
由于塑料与电子纺织品制造技术的进步,使得一次性使用的IoMT传感器已达到相当低的成本[66]。对于即时医疗诊断应用的建立,可携性与低系统复杂性是不可或缺的要素[67]。物联网在医疗保健的应用,于监测慢性病、以及疾病的预防和控制中产生很大的功用,透过远程监控,医院与卫生相关机构可以获得患者的数据,并可做进一步分析[68]。
物联网可以帮助集成通信、控制与信息处理。物联网的应用可以扩展至运输系统个层面,包括载具、基础设施,以及驾驶人。物联网组件之间的信息传递,使得载具内以及不同载具之间可以互相通信[69],达成智能交通灯号、智能停车、电子道路收费系统、物流和车队管理、主动巡航控制系统,以及安全和道路辅助等应用[70][71]。
例如,在物流和车队管理中,物联网平台可以通过无线传感器持续监视货物和资产的位置和状况,并在发生异常事件(延迟、损坏、失窃等)时发送特定警报。这必须借助物联网与设备之间的无缝连接才可能实现。利用GPS、湿度、温度等传感器将数据发送至物联网平台,随后对数据进行分析,并将结果发送给用户。如此,用户可以跟踪载具的即时状态,并做出适当的处置。如果与机器学习结合,还可以进行驾驶睡意侦测,以及提供自动驾驶汽车等来帮助减少交通事故[72]。
物联网在基础设施的运用主要在监视与控制各类基础设施,例如铁轨、桥梁,海上与陆上的风力发电厂、废弃物管理等。透过监视任何事件或结构状况的变化,以便高效地安排维修和保养活动[71]。
目前全球有数个大规模部署的案例正在进行中,例如韩国松岛国际都市。这是一座设备齐全的智慧城市,对于能源使用、交通流量进行精密的控制,各家户垃圾透过管道集中至废物处理中心,然后在这里进行自动分类,与再回收利用。截至2018年6月约70%的商业区已竣工[73]。
西班牙桑坦德为另一个应用案例。这一座人口约18万的都市,安装了超过两万个传感器,主要应用于三方面:(1) 交通:透过手机APP可以即时获得停车位信息,并引导至该处停车;(2) H2O 2.0:可即时获得用水信息;(3) 公园智能空间:可随温度、湿度调整洒水系统,并检查公园内垃圾桶的垃圾量[74]。
军事物联网(Internet of Military Things,IoMT)是物联网在军事领域中的应用,目的是侦察、监视与战斗有关的目标,主要受到未来将于城市环境中战斗影响。军事物联网相关领域包括传感器、车辆、机器人、武器、可穿戴式智能产品,以及在战场上相关智能技术的使用[75]。
战地物联网(The Internet of Battlefield Things,IoBT)是一个美国陆军研究实验室(ARL)的研究项目,着重研究与物联网相关的基础科学,以增强陆军士兵的能力[76]。2017年,ARL启动了战地物联网协作研究联盟(Internet of Battlefield Things Collaborative Research Alliance,IoBT-CRA),建立了产业、大学和陆军研究人员之间的工作合作关系,以推展物联网技术及其在陆军作战中的应用的理论基础[77]。
批评、问题与争议
安全性是物联网应用受到各界质疑的主要因素[6],质疑之处在于物联网技术正在快速发展中,但其中涉及的安全性挑战,与可能需要的法规变更等,目前均相当欠缺[7][8]。
物联网面对的大多数技术安全问题类似于一般服务器、工作站与智能手机[78],包括密码太短、忘记更改密码的默认值、设备之间传输采用未加密信号、SQL注入、未将软件更新至最新版本等[79]。另外,由于多数物联网设备计算能力相当有限,无法使用常见的安全措施例如防火墙、或是高强度的密码[80];许多物联网设备因为价格低廉,因此无法有人力与经费支持,将软件更新至最新版本[81]。
安全性较差的物联网设备可能被当作跳板以攻击其他设备。2016年时发生恶意程序Mirai(辞源:日文“未来”)感染物联网设备,以分布式拒绝服务攻击(DDoS)攻击DNS服务器与许多网站。在20小时内,Mirai感染了大约65,000台物联网设备,最终感染数量为20~30万台。感染设备之国家分布以巴西、哥伦比亚和越南居前三位,设备包括数字视频录影机、网络监控摄影机、路由器、打印机等,以厂商区分依序为大华股份、华为、中兴通信、思科、合勤[82][83]。2017年5月,Cloudflare的计算机科学家Junade Ali指出,由于发布/订阅(Publish–subscribe pattern)的不当设计,许多物联网设备存在DDoS漏洞[84][85]。利用这些漏洞的将物联网设备作为跳板的攻击,是互联网服务的真正威胁[86]。
产业界对各界质疑安全性问题做出了回应,“物联网安全基金会”(IoTSF)于2015年9月23日成立,期借由倡导知识与最佳实践使得物联网更加安全[87]。此外,一些公司也推出创新解决方案,以确保物联网设备的安全性。2017年,Mozilla公司推出了“Project Things”,该项目可以通过安全的“Web of Things”网关与物联网设备建立加密连线[88]。美国信息安全专家布鲁斯·施奈尔(Bruce Schneier)认为将物联网纳入政府监管业务是有必要的,以确保产业界生产的物联网设备可以遵守安全规范,以及出事的时候有人负责[89]。
物联网的一大问题为平台分散、跨平台之可操作性低,以及欠缺通用技术标准[90][91]。物联网设备种类繁多,以及硬件与在其上运作的软件之间的差异,使得开发系统时,各应用程序保持一致变得很困难[92]。
物联网无定形(amorphous)的计算特性往往会造成安全性问题,因为在核心操作系统中发现的错误修补,通常无法涵盖较早期且入门级的设备[93],一组研究人员表示,设备供应商未能通过补丁和更新支持较旧的设备,导致超过87%的现行Android设备容易受到攻击[94]。
相关条目
参考资料
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.