Loading AI tools
𨭎(钅喜)是人造元素,没有稳定同位素。它最长寿的同位素是半衰期约9.8分钟的267Sg及半衰期约5分钟的269Sg。由于数据不足,无法确定哪个同位素更稳定。
符号 | Z | N | 同位素质量(u) [n 1][n 2] |
半衰期[4] [n 2] |
衰变 方式[4] |
衰变 产物 |
原子核 自旋[4][n 1] |
---|---|---|---|---|---|---|---|
激发能量[n 1][n 2] | |||||||
258Sg | 106 | 152 | 258.11298(44)# | 2.7(5) ms [6997260000000000000♠2.6+0.6 −0.4 ms] |
SF | (various) | 0+ |
259Sg | 106 | 153 | 259.11440(13)# | 402(56) ms | α | 255Rf | (11/2−) |
259mSg | 87(22) keV | 226(27) ms | α (97%) | 255Rf | (1/2+) | ||
SF (3%) | (various) | ||||||
260Sg | 106 | 154 | 260.114384(22) | 4.95(33) ms | SF (71%) | (various) | 0+ |
α (29%) | 256Rf | ||||||
261Sg | 106 | 155 | 261.115949(20) | 183(5) ms | α (98.1%) | 257Rf | (3/2+) |
β+ (1.3%) | 261Db | ||||||
SF (0.6%) | (various) | ||||||
261mSg | 100(50)# keV | 9.3(18) µs [6994900000000000000♠9.0+2.0 −1.5 µs] |
IT | 261Sg | 7/2+# | ||
262Sg | 106 | 156 | 262.11634(4) | 10.3(17) ms | SF (92%) | (various) | 0+ |
α (8%)[5] | 258Rf | ||||||
262mSg | 860(110) keV | 9−# | |||||
263Sg | 106 | 157 | 263.11829(10)# | 0.94(14) s | α (87%) | 259Rf | 3/2+# |
SF (13%) | (various) | ||||||
263m1Sg | 51(19) keV | 0.42(10) s | α | 259Rf | 7/2+# | ||
263m2Sg | 100(30) keV | ||||||
264Sg | 106 | 158 | 264.11893(30)# | 78(25) ms [6998680000000000000♠68+32 −16 ms] |
SF | (various) | 0+ |
265Sg | 106 | 159 | 265.12109(13)# | 9.2(16) s | α | 261Rf | 11/2−# |
265mSg | −10(160)# keV | 16.4(24) s | α | 261Rf | |||
266Sg[n 3] | 106 | 160 | 266.12198(26)# | 0.39(11) s | SF | (various) | 0+ |
267Sg[n 4][6][2] | 106 | 161 | 267.12436(30)# | 7002588000000000000♠9.8+11.3 −4.5 min |
α | 263mRf | 9/2# |
267mSg[n 5][2] | 110 keV# | 7002100000000000000♠100+92 −39 s |
SF | (various) | 1/2# | ||
268Sg[n 6][7] | 106 | 162 | 268.12539(50)# | 7001130000000000000♠13+17 −4 s |
SF | (various) | 0+ |
269Sg[n 7] | 106 | 163 | 269.12863(39)# | 5(2) min | α | 265Rf | |
271Sg[n 8][3] | 106 | 165 | 271.13393(63)# | 7001310000000000000♠31+13 −7 s |
α (73%) | 267Rf | 3/2+# |
SF (27%) | (various) |
本节有关以冷核聚变反应合成𨭎原子核。这些过程在低激发能(约10至20 MeV,因而称为“冷”核聚变)生成复核,裂变之后存活几率较高。处于激发状态的原子核再衰变至基态,期间只发出一颗或两颗中子。
位于前苏联杜布纳联合核研究所由格奥尔基·弗廖罗夫领导的团队在1974年首次利用冷核聚变反应尝试合成𨭎。他们宣布制造出一次0.48秒长的自发裂变,并指向259Sg。根据后期证据,他们很可能当时探测到260Sg及其衰变产物256Rf两者的衰变反应。The TWG的结论为,根据当时的证据不足以作出任何结论。[8]
该团队在1983至1984年再次研究这条反应,并探测到5秒长的自发裂变,并直接指向260Sg。[8]
位于德国重离子研究所的团队首次在1985年研究了这条反应。他们使用的是改进了的母子体衰变关系法,并探测到261Sg (x=1)和260Sg,以及测量到不完整的1n中子蒸发激发函数。 [9]
2000年12月,位于法国国家大型重离子加速器的团队研究了该反应,并探测到10颗261Sg原子及2颗260Sg原子。
在优化设施之后,重离子研究所人员在2003年使用金属铅目标测量了1n激发函数。同年5月,他们成功把铅-208目标替换成更耐损耗的硫化铅(PbS)目标,从而能够在日后使用更强的离子束。他们探测了1n、2n和3n激发函数,并首次在261Sg同位素上运用α-γ光谱法。他们探测到这个同位素的大约1600个原子,还辨认到新的α光谱线,量度了更准确的半衰期以及辨认出新的电子捕获和自发裂变支链。另外,他们首次探测到了来自衰变产物𬬻的K壳层X光,并改进了有关260Sg的数据,包括一个不确定的同核异构体。这项研究在2005年9月和2006年3月也有继续进行。对261Sg的累积数据于2007年发布。[10]2005年9月的工作也包括开始对260Sg进行光谱分析。
位于劳伦斯伯克利国家实验室的团队最近研究了这条反应,从而对同位素261Sg进行分析。他们探测到一个新的同核异构体261mSg,其通过内部转换衰变到基态。在同一项实验中,他们也证实了衰变产物257Rf的K壳层同核异构体257m2Rf。[11]
杜布纳团队在1974年研究了该反应。他们用它来判断使用Pb-207和Pb-208目标时所观察到的自发裂变行为的源头。他们并没有探测到任何自发裂变,意味着产生的同位素主要进行α衰变。[8]
在1974年一系列冷核聚变反应中,杜布纳的团队也研究了该反应,但同样没有探测到自发裂变。[8]1994年,重离子研究所的团队利用这条反应合成𨭎,从而研究新发现的偶-偶同位素258Sg。他们探测到10颗258Sg原子,其进行了自发裂变。
本节有关以热核聚变反应合成𨭎原子核。这些过程在高激发能(约40至50 MeV,因而称为“热”核聚变)生成复核,裂变及拟裂变之后存活几率较低。处于激发状态的原子核再衰变至基态,期间发出3至5颗中子。
1993年,位于杜布纳由Yuri Lazarev带领的团队宣布发现了半衰期较长的266Sg和265Sg,都是经过这条反应在4n和5n通道中产生的。这是在寻找可进行化学研究的𨭎同位素之后得到的成果。报告中指出,266Sg以8.57 MeV的能量放射α粒子,半衰期约为20秒。这为Z=108,N=162闭核的稳定性理论提供了证据。[17]1997年,重离子研究所进一步研究了该反应。尽管他们确认了266Sg的产量、衰变模式及半衰期,但是一些矛盾之处仍然存在。在最近进行的对270Hs的合成实验中(见𬭶)发现,266Sg只进行短半衰期的自发裂变(TSF = 360 ms)。有可能这是其基态(266gSg),而另一个直接产生的活动则指向高旋的K同核异构体266mSg。要证实这一点需要进一步的实验。
最近在重新评估265Sg和266Sg的衰变特性后,得出的结论为,至今所有衰变都源自具有两种同核异构体的265Sg。其一是265aSg,其主要的α线位于8.85 MeV,计算出的半衰期为8.9秒;而265bSg的衰变能量为8.70 MeV,半衰期为16.2秒。直接产生时,两个同核异构能级同时存在。从269Hs的衰变数据中能看出,265bSg是在269Hs衰变时产生的,并会衰变至短半衰期的261gRf同位素。这意味着266Sg其实并非放射α粒子的长半衰期同位素,它实际上在短时间内就会进行裂变。
无论源头是哪一个同位素,研究人员最近成功使用这条反应来研究𨭎的化学属性。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.