Loading AI tools
马尔可夫统计模型 来自维基百科,自由的百科全书
隐马尔可夫模型(英语:Hidden Markov Model;缩写:HMM),或称作隐性马尔可夫模型,是统计模型,用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。
此条目需要补充更多来源。 (2015年7月3日) |
在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。
隐马尔可夫模型在热力学、统计力学、物理学、化学、经济学、金融学、信号处理、信息论、模式识别(如语音识别、[1]手写识别、手势识别、[2]词性标记、乐谱跟随[3])、局部放电[4]及生物信息学等领域都有应用。[5][6]
令、为离散时间随机过程, 。则是隐马尔可夫模型的条件是:
令、为连续时间随机过程。则是隐马尔可夫模型的条件是:
过程状态(或)称作隐状态,(或)称作条件概率或输出概率。
下边的图示强调了HMM的状态变迁。有时,明确的表示出模型的演化也是有用的,我们用 x(t1) 与 x(t2) 来表达不同时刻 t1 和 t2 的状态。
图中箭头方向则表示不同信息间的关系性,因此可以得知和有关,而又和有关。
而每个只和有关,其中我们称为隐藏变量(hidden variable),是观察者无法得知的变量。
隐性马尔可夫模型常被用来解决有未知条件的数学问题。
假设隐藏状态的值对应到的空间有个元素,也就是说在时间时,隐藏状态会有种可能。
同样的,也会有种可能的值,所以从到间的关系会有种可能。
除了间的关系外,每组间也有对应的关系。
若观察到的有种可能的值,则从到的输出模型复杂度为。如果是一个维的向量,则从到的输出模型复杂度为。
在这个图中,每一个时间块(x(t), y(t))都可以向前或向后延伸。通常,时间的起点被设置为t=0 或 t=1.
假设观察到的结果为
隐藏条件为
长度为,则马尔可夫模型的概率可以表达为:
由这个概率模型来看,可以得知马尔可夫模型将该时间点前后的信息都纳入考量。
HMM有三个典型(canonical)问题:
此外,已知输出序列,寻找最可能的状态转移以及输出概率.通常使用Baum-Welch算法以及Viterbi algorithm解决。另外,最近的一些方法使用联结树算法来解决这三个问题。 [来源请求]
假设你有一个住得很远的朋友,他每天跟你打电话告诉你他那天做了什么。你的朋友仅仅对三种活动感兴趣:公园散步,购物以及清理房间。他选择做什么事情只凭天气。你对于他所住的地方的天气情况并不了解,但是你知道总的趋势。在他告诉你每天所做的事情基础上,你想要猜测他所在地的天气情况。
你认为天气的运行就像一个马尔可夫链。其有两个状态“雨”和“晴”,但是你无法直接观察它们,也就是说,它们对于你是隐藏的。每天,你的朋友有一定的概率进行下列活动:“散步”、“购物”、“清理”。因为你朋友告诉你他的活动,所以这些活动就是你的观察数据。这整个系统就是一个隐马尔可夫模型(HMM)。
你知道这个地区的总的天气趋势,并且平时知道你朋友会做的事情。也就是说这个隐马尔可夫模型的参数是已知的。你可以用程序语言(Python)写下来:
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
在这些代码中,start_probability
代表了你对于你朋友第一次给你打电话时的天气情况的不确定性(你知道的只是那个地方平均起来下雨多些)。在这里,这个特定的概率分布并非平衡的,平衡概率应该接近(在给定变迁概率的情况下){'Rainy': 0.571, 'Sunny': 0.429}
。
transition_probability
表示基于马尔可夫链模型的天气变迁,在这个例子中,如果今天下雨,那么明天天晴的概率只有30%。代码emission_probability
表示了你朋友每天做某件事的概率。如果下雨,有50% 的概率他在清理房间;如果天晴,则有60%的概率他在外头散步。
这个例子在维特比算法页上有更多的解释。
下图展示了实例化HMM的一般结构。椭圆形代表随机变量,可采用多个数值中的任意一种。随机变量是t时刻的隐状态(图示模型中);随机变量y(t)是t时刻的观测值();箭头表示条件依赖关系。
图中可清楚看出,给定隐变量在时间t的条件概率分布只取决于隐变量的值,之前的则没有影响,这就是所谓马尔可夫性质。观测变量同理,只取决于隐变量的值。
在本文所述标准HMM中,隐变量的状态空间是离散的,而观测值本身则可以离散(一般来自分类分布)也可以连续(一般来自正态分布)。HMM参数有两类:转移概率与输出概率,前者控制时刻的隐状态下,如何选择t时刻的隐状态。
隐状态空间一般假设包含N个可能值,以分类分布为模型。这意味着,对隐变量在t时刻可能所处的N种状态中的每种,都有到时刻可能的N种状态的转移概率,共有个转移概率。注意从任意给定状态转移的转移概率之和须为1。于是,转移概率构成了N阶方阵,称作马尔可夫矩阵。由于任何转移概率都可在已知其他概率的情形下确定,因此共有个转移参数。
此外,对N种可能状态中的每种,都有一组输出概率,在给定隐状态下控制着观测变量的分布。这组概率的大小取决于观测变量的性质,例如,若观测变量是离散的,有M种值、遵循分类分布,则有个独立参数,所有隐状态下共有个输出概率参数。若观测向量是M维向量,遵循任意多元正态分布,则将有M个参数控制均值,个参数控制协方差矩阵,共有个输出参数。(这时,除非M很小,否则限制观测向量各元素间协方差的性质可能更有用,例如假设各元素相互独立,或假设除固定多相邻元素外,其他元素相互独立。)
HMM的参数学习任务是指在给定输出序列或一组序列的情形下,找到一组最佳的状态转换和转移概率。任务通常是根据一组输出序列,得到HMM参数的最大似然估计值。目前还没有精确解这问题的可行算法,可用鲍姆-韦尔奇算法或Baldi–Chauvin算法高效地推导出局部最大似然。鲍姆-韦尔奇算法是最大期望算法的特例。
若将HMM用于时间序列预测,则更复杂的贝叶斯推理方法(如马尔可夫链蒙特卡洛采样法,MCMC采样法)已被证明在准确性和稳定性上都优于寻找单一的最大似然模型。[7]由于MCMC带来了巨大的计算负担,在计算可扩展性也很重要时,也可采用贝叶斯推理的变分近似方法,如[8]。事实上,近似变分推理的计算效率可与期望最大化相比,而精确度仅略逊于精确的MCMC型贝叶斯推理。
因为马尔可夫模型有下列特色:
隐马尔可夫模型最初是在20世纪60年代后半期Leonard E. Baum和其它一些作者在一系列的统计学论文中描述的。HMM最初的应用之一是开始于20世纪70年代中期的语音识别。[9]
在1980年代后半期,HMM开始应用到生物序列尤其是DNA的分析中。此后,在生物信息学领域HMM逐渐成为一项不可或缺的技术。[10]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.