Loading AI tools
来自维基百科,自由的百科全书
在抽象代数中,赋值环是一个域里的一类特别子环,可由域上的某个赋值定义。离散赋值环是其中较容易操作的一类。
此条目翻译品质不佳。 (2021年2月10日) |
赋值环是一个整环D,满足其分式域 F的任一非零元素x,至少有x 或 x −1 ∈ D. 一个域 F 的子环 R 被称作赋值环,当且仅当对每个 ,必有 或 。R被称作其分式域 F赋值环或被称作在其分式域 F的素点(位)
若 R 是主理想域,此时 R 被称为离散赋值环。
设k是一个有序的领域。 k的元素被称为有限的,如果它在于两个整数N <X <米;否则,它被称为无限。有限元素的K D是估值环。等元素x的x∈D和X-1∉D是无穷小元素的集合;一个元素x在X∉D和X-1∈D,被称为无限。 有限元的超现实领域·R环F是一个* R的估值环F由所有超现实的数字,从一个标准的真正的不同,由一个无限小的量,这相当于说超现实数x这样一些标准的整数n-N <X <N。渣场,有限的超现实数模无穷的超现实数字理想,是同构的实数。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.