Loading AI tools
if and only if 来自维基百科,自由的百科全书
当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(英语:Exclusive NOR)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或。与一般的逻辑或非NOR不同,当两两数值相同为是,而数值不同时为否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在这个条件成立,并且仅在这个条件成立时”之意。当命题满足“当则”且“仅当则”时,称为“当且仅当则”,其他等价的说法有“当且仅当[注 1]”;“是的充分必要条件(充要条件)”;“等价于”。
此条目需要补充更多来源。 (2020年9月19日) |
“当且仅当”的各地常用名称 | |
---|---|
中国大陆 | 当且仅当 |
台湾 | 若且唯若 |
港澳 | 当且仅当 |
一般而言,当我们看到“当且仅当则”,我们可以知道“如果成立时,则一定成立;如果成立时,则也一定成立”;“如果不成立时,则一定不成立;如果不成立时,则也一定不成立”。
与此相对应的逻辑符号是和。这两个通常被当作是相等的。但是,一些数学教科书,特别是那些关于一阶逻辑而非命题逻辑对此有所区别,在那里前者被用来表示逻辑公式,后者表示那些公式的推理(譬如说在元逻辑中)。
设与为两命题,在证明“当且仅当则”时,这相当于去同时证明陈述“如果成立,则成立”和“如果成立,则成立”。另外,也可以证明“如果成立,则成立”和“如果不成立,则不成立”,后者作为对偶,等价于“如果成立,则成立”。
在出版物中,英语iff的表示标记最早出现在约翰·L·凯利的《一般拓扑学》中。它的发明通常被认为是归于数学家保罗·哈尔莫斯,但在哈尔莫斯的自传中却声明该标记另有出处,他只是首先在数学领域使用[1]。
简单地,如下的两个例子可以说明这两者的不同:
第1句指小王一定会吃香草口味的冰淇淋,但没有排除他会吃香草口味以外冰淇淋的可能性,能肯定的是他不会拒绝香草口味的冰淇淋。
第2句指小王一定吃且只吃香草口味的,他不会吃其它口味的冰淇淋。
用“当且仅当”连接两个句子造成的句子被称为是“双条件句”。“当且仅当”把两个句子结合成新的句子。它不应该跟描述两个句子之间关系的“逻辑等价”混淆。
双条件句“当且仅当则”,是用和来陈述和所描述的事件状况之间的关系。
相对照的,“逻辑等价于”则注重两个句子:它只是陈述两个句子之间的关系,而不是它们所介绍的什么事情。
这里的区别非常容易混淆,已经使得很多哲学家迷惑。当然,在“逻辑等价于”时,“当且仅当则”为真,但是它的逆并不成立。让我们重新考虑上面的句子:
很清楚,对于这个特定的双条件句,两个半句之间并没有逻辑等价。[2]
在哲学和逻辑学中,“当且仅当”通常用作定义,因为定义被认为是全称量化的双条件句。但在数学中,相比起“当且仅当”,如果通常被用于定义。这里给出一些使用到“当且仅当的”真陈述,也是真双条件句(第一句是一个定义的例子):
“当且仅当”在逻辑领域以外,在数学出版物或者普通的谈话中也会用到。如同上面所说,它指的是某个陈述是另外一个的充分必要条件。这是一个数学术语的例子。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.