第一类错误与第二类错误(英语:Type I error & Type II error)为统计学中推论统计学统计术语,表示统计学假设检验中的两种错误。
此条目需要精通或熟悉统计学的编者参与及协助编辑。 (2024年3月22日) |
简介
在假设检验中,有一种假说称为“零假设”,记为,假说检验的目的是利用统计的方式,推翻零假设的成立,也就是备择假设(Alternative hypothesis,记为或)成立。
假设检验涉及选择两个相互竞争的命题,称为零假设(Null hypothesis),用H0表示,另一种备择假设(Alternative hypothesis),用H1表示。
如果测试结果与现实相符,则做出了正确的决定。但是,如果测试结果与实际不符,则发生错误。发生错误的情况有两种:零假设为真,而我们拒绝H0。 另一方面,备择假设H1为真,而我们不拒绝H0。 两种错误分别称为:第一类错误、第二类错误[1]。
- 若零假设事实上成立,但统计检验的结果拒绝零假设(接受备择假设),这种错误称为第一类错误。
- 若零假设事实上不成立,但统计检验的结果不拒绝零假设,这种错误称为第二类错误。[2]
- 概念上类似于法庭审判中的判决。零假设对应于被告的立场:正如他在被证明有罪之前被假定为无罪一样,在数据提供反对它的令人信服的证据之前,零假设也被假定为真。 备择假设对应于反对被告的立场。 具体来说,零假设还涉及不存在差异或不存在关联。
- 以利用验孕棒验孕为例,此时没有怀孕为零假设。若用验孕棒替一位未怀孕者验孕,结果呈已怀孕,此即第一类错误。若用验孕棒替一位已怀孕者验孕,结果呈未怀孕,此即第二类错误。
交叉错误率 (CER) 是第一类错误和第二类错误相等的点,代表了衡量生物识别有效性的最佳方法。 具有较低CER值的系统比具有较高CER值的系统提供更高的准确度。[来源请求]
在伪阳性和伪阴性方面,阳性结果对应于拒绝零假设,而阴性结果对应于未能拒绝零假设; “伪”表示得出的结论不正确。 因此,第一类错误相当于伪阳性,第二类错误相当于伪阴性。[来源请求]
参考
相关条目
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.