在统计学中,矩估计(英语:method of moments)是估计总体参数的方法。首先推导涉及感兴趣的参数的总体矩(即所考虑的随机变量的幂的期望)的方程。然后取出一个样本并从这个样本估计总体矩。接着使用样本矩取代(未知的)总体矩,解出感兴趣的参数。从而得到那些参数的估计。矩估计是英国统计学家卡尔·皮尔逊于1894年提出的。 此条目没有列出任何参考或来源。 (2014年12月22日) 方法 假设问题是要估计表征随机变量 W {\displaystyle W} 的分布 f W ( w ; θ ) {\displaystyle f_{W}(w;\theta )} 的 k {\displaystyle k} 个未知参数 θ 1 , θ 2 , … , θ k {\displaystyle \theta _{1},\theta _{2},\dots ,\theta _{k}} 。如果真实分布("总体矩")的前 k {\displaystyle k} 阶矩可以表示成这些 θ {\displaystyle \theta } 的函数: μ 1 ≡ E [ W ] = g 1 ( θ 1 , θ 2 , … , θ k ) , {\displaystyle \mu _{1}\equiv E[W]=g_{1}(\theta _{1},\theta _{2},\dots ,\theta _{k}),} μ 2 ≡ E [ W 2 ] = g 2 ( θ 1 , θ 2 , … , θ k ) , {\displaystyle \mu _{2}\equiv E[W^{2}]=g_{2}(\theta _{1},\theta _{2},\dots ,\theta _{k}),} ⋮ {\displaystyle \vdots } μ k ≡ E [ W k ] = g k ( θ 1 , θ 2 , … , θ k ) . {\displaystyle \mu _{k}\equiv E[W^{k}]=g_{k}(\theta _{1},\theta _{2},\dots ,\theta _{k}).} 设取出一大小为 n {\displaystyle n} 的样本,得到 w 1 , … , w n {\displaystyle w_{1},\dots ,w_{n}} 。对于 j = 1 , … , k {\displaystyle j=1,\dots ,k} ,令 μ ^ j = 1 n ∑ i = 1 n w i j {\displaystyle {\hat {\mu }}_{j}={\frac {1}{n}}\sum _{i=1}^{n}w_{i}^{j}} 为j阶样本矩,是 μ j {\displaystyle \mu _{j}} 的估计。 θ 1 , θ 2 , … , θ k {\displaystyle \theta _{1},\theta _{2},\dots ,\theta _{k}} 的矩估计量记为 θ ^ 1 , θ ^ 2 , … , θ ^ k {\displaystyle {\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}} ,由这些方程的解(如果存在)定义:[来源请求] μ ^ 1 = g 1 ( θ ^ 1 , θ ^ 2 , … , θ ^ k ) , {\displaystyle {\hat {\mu }}_{1}=g_{1}({\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}),} μ ^ 2 = g 2 ( θ ^ 1 , θ ^ 2 , … , θ ^ k ) , {\displaystyle {\hat {\mu }}_{2}=g_{2}({\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}),} ⋮ {\displaystyle \vdots } μ ^ k = g k ( θ ^ 1 , θ ^ 2 , … , θ ^ k ) . {\displaystyle {\hat {\mu }}_{k}=g_{k}({\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}).} 参见 广义矩估计 点估计 估计量的偏差 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.