洛必达法则(又称罗比塔法则[1])(法语:Règle de L'Hôpital,英语:L'Hôpital's rule)是利用导数来计算具有不定型的极限的方法。该法则以法国数学家纪尧姆·德·洛必达的名字命名,但实际上是由瑞士数学家约翰·伯努利[2]所发现。 叙述 洛必达法则可以求出特定函数趋近于某数的极限值。令 c ∈ R ¯ {\displaystyle c\in {\bar {\mathbb {R} }}} (扩展实数),两函数 f ( x ) , g ( x ) {\displaystyle f(x),g(x)} 在以 x = c {\displaystyle x=c} 为端点的开区间可微, lim x → c f ′ ( x ) g ′ ( x ) ∈ R ¯ {\displaystyle \lim _{x\to c}{\frac {f'(x)}{g'(x)}}\in {\bar {\mathbb {R} }}} ,并且 g ′ ( x ) ≠ 0 {\displaystyle g'(x)\neq 0} 。 如果 lim x → c f ( x ) = lim x → c g ( x ) = 0 {\displaystyle \lim _{x\to c}{f(x)}=\lim _{x\to c}{g(x)}=0} 或 lim x → c | f ( x ) | = lim x → c | g ( x ) | = ∞ {\displaystyle \lim _{x\to c}{|f(x)|}=\lim _{x\to c}{|g(x)|}=\infty } 其中一者成立,则称欲求的极限 lim x → c f ( x ) g ( x ) {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}} 为未定式。 此时洛必达法则表明: lim x → c f ( x ) g ( x ) = lim x → c f ′ ( x ) g ′ ( x ) {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}} 。 对于不符合上述分数形式的未定式,可以通过运算转为分数形式,再以本法则求其值。以下列出数例: 更多信息 (1) ... 欲求的极限 条件 变换为分数形式的方法 (1) lim x → c f ( x ) g ( x ) {\displaystyle \lim _{x\to c}f(x)g(x)\!} lim x → c f ( x ) = 0 , lim x → c g ( x ) = ∞ {\displaystyle \lim _{x\to c}f(x)=0,\ \lim _{x\to c}g(x)=\infty \!} lim x → c f ( x ) g ( x ) = lim x → c f ( x ) 1 / g ( x ) {\displaystyle \lim _{x\to c}f(x)g(x)=\lim _{x\to c}{\frac {f(x)}{1/g(x)}}\!} 或 lim x → c g ( x ) 1 / f ( x ) {\displaystyle \lim _{x\to c}{\frac {g(x)}{1/f(x)}}\!} (2) lim x → c ( f ( x ) − g ( x ) ) {\displaystyle \lim _{x\to c}(f(x)-g(x))\!} lim x → c f ( x ) = ∞ , lim x → c g ( x ) = ∞ {\displaystyle \lim _{x\to c}f(x)=\infty ,\ \lim _{x\to c}g(x)=\infty \!} lim x → c ( f ( x ) − g ( x ) ) = lim x → c 1 / g ( x ) − 1 / f ( x ) 1 / ( f ( x ) g ( x ) ) {\displaystyle \lim _{x\to c}(f(x)-g(x))=\lim _{x\to c}{\frac {1/g(x)-1/f(x)}{1/(f(x)g(x))}}\!} (3) lim x → c f ( x ) g ( x ) {\displaystyle \lim _{x\to c}{f(x)}^{g(x)}\!} lim x → c f ( x ) = 0 + , lim x → c g ( x ) = 0 {\displaystyle \lim _{x\to c}f(x)=0^{+},\lim _{x\to c}g(x)=0\!} 或 lim x → c f ( x ) = ∞ , lim x → c g ( x ) = 0 {\displaystyle \lim _{x\to c}f(x)=\infty ,\ \lim _{x\to c}g(x)=0\!} lim x → c f ( x ) g ( x ) = exp lim x → c g ( x ) 1 / ln f ( x ) {\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {g(x)}{1/\ln f(x)}}\!} (4) lim x → c f ( x ) g ( x ) {\displaystyle \lim _{x\to c}{f(x)}^{g(x)}\!} lim x → c f ( x ) = 1 , lim x → c g ( x ) = ∞ {\displaystyle \lim _{x\to c}f(x)=1,\ \lim _{x\to c}g(x)=\infty \!} lim x → c f ( x ) g ( x ) = exp lim x → c ln f ( x ) 1 / g ( x ) {\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {\ln f(x)}{1/g(x)}}\!} 关闭 注意:不能在数列形式下直接用洛必达法则,因为对于离散变量是无法求导数的。但此时有形式类近的斯托尔兹-切萨罗定理(Stolz-Cesàro theorem)作为替代。 证明 下面仅给出 lim x → a f ( x ) = lim x → a g ( x ) = 0 , g ′ ( a ) ≠ 0 {\displaystyle \lim _{x\to a}{f(x)}=\lim _{x\to a}{g(x)}=0,\,g'(a)\neq 0} 的证明。 设两函数 f ( x ) {\displaystyle f(x)} 及 g ( x ) {\displaystyle g(x)} 在a 点附近连续可导, f ( x ) {\displaystyle \ f(x)} 及 g ( x ) {\displaystyle \ g(x)} 都在 a 点连续,且其值皆为 0 , f ( a ) = 0 ; g ( a ) = 0 , lim x → a f ( x ) = 0 ; lim x → a g ( x ) = 0 {\displaystyle f(a)=0;\;g(a)=0,\qquad \lim _{x\to a}f(x)=0;\;\lim _{x\to a}g(x)=0} 为了叙述方便,假设两函数在 a 点附近都不为0。另一方面,两函数的导数比值在 a 点存在,记为 lim x → a f ′ ( x ) g ′ ( x ) = L . {\displaystyle \lim _{x\to a}{\frac {f'(x)}{g'(x)}}=L.} 由极限的定义,对任何一个 ϵ > 0 {\displaystyle \epsilon >0} (试想像y轴),都存在 η > 0 {\displaystyle \eta >0} (试想像x轴),使得对任意的 a − η ⩽ x ⩽ a + η , x ≠ a {\displaystyle a-\eta \leqslant x\leqslant a+\eta ,\,\,x\neq a} ,都有: L − ϵ ⩽ f ′ ( x ) g ′ ( x ) ⩽ L + ϵ {\displaystyle L-\epsilon \leqslant {\frac {f'(x)}{g'(x)}}\leqslant L+\epsilon } 而根据柯西中值定理(逆定理),对任意的 a − η ⩽ x ⩽ a + η , x ≠ a {\displaystyle a-\eta \leqslant x\leqslant a+\eta ,\,\,x\neq a} ,都存在一个介于 a {\displaystyle a} 和 x {\displaystyle x} 之间的数 ξ {\displaystyle \xi } ,使得: f ( x ) g ( x ) {\displaystyle {\frac {f(x)}{g(x)}}} = f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) {\displaystyle ={\frac {f(x)-f(a)}{g(x)-g(a)}}={\frac {f'(\xi )}{g'(\xi )}}} 于是, L − ϵ ⩽ f ( x ) g ( x ) ⩽ L + ϵ {\displaystyle L-\epsilon \leqslant {\frac {f(x)}{g(x)}}\leqslant L+\epsilon } 因此, 极限 lim x → a f ( x ) g ( x ) = L = lim x → a f ′ ( x ) g ′ ( x ) . {\displaystyle \lim _{x\to a}{\frac {f(x)}{g(x)}}=L=\lim _{x\to a}{\frac {f'(x)}{g'(x)}}.} 例子 lim x → 0 sin π x π x {\displaystyle \lim _{x\to 0}{\frac {\sin \pi x}{\pi x}}\,} = lim x → 0 sin x x {\displaystyle =\lim _{x\to 0}{\frac {\sin x}{x}}\,} = lim x → 0 cos x 1 {\displaystyle =\lim _{x\to 0}{\frac {\cos x}{1}}\,} = 1 1 = 1 {\displaystyle ={\frac {1}{1}}=1\,} lim x → 0 2 sin x − sin 2 x x − sin x {\displaystyle \lim _{x\to 0}{2\sin x-\sin 2x \over x-\sin x}} = lim x → 0 2 cos x − 2 cos 2 x 1 − cos x {\displaystyle =\lim _{x\to 0}{2\cos x-2\cos 2x \over 1-\cos x}} = lim x → 0 − 2 sin x + 4 sin 2 x sin x {\displaystyle =\lim _{x\to 0}{-2\sin x+4\sin 2x \over \sin x}} = lim x → 0 − 2 cos x + 8 cos 2 x cos x {\displaystyle =\lim _{x\to 0}{-2\cos x+8\cos 2x \over \cos x}} = − 2 cos 0 + 8 cos 0 cos 0 {\displaystyle ={-2\cos 0+8\cos 0 \over \cos 0}} = 6 {\displaystyle =6\,} lim x → 0 r x − 1 x {\displaystyle \lim _{x\to 0}{r^{x}-1 \over x}} = lim x → 0 d d x r x d d x x {\displaystyle =\lim _{x\to 0}{{\frac {d}{dx}}r^{x} \over {\frac {d}{dx}}x}} = lim x → 0 r x ln r 1 {\displaystyle =\lim _{x\to 0}{r^{x}\ln r \over 1}} = ln r lim x → 0 r x {\displaystyle =\ln r\lim _{x\to 0}{r^{x}}} = ln r {\displaystyle =\ln r\!} lim x → 0 e x − 1 − x x 2 = lim x → 0 e x − 1 2 x = lim x → 0 e x 2 = 1 2 {\displaystyle \lim _{x\to 0}{e^{x}-1-x \over x^{2}}=\lim _{x\to 0}{e^{x}-1 \over 2x}=\lim _{x\to 0}{e^{x} \over 2}={1 \over 2}} lim x → ∞ x ln ( x ) = lim x → ∞ 1 2 x 1 x = lim x → ∞ x 2 = ∞ {\displaystyle \lim _{x\to \infty }{\frac {\sqrt {x}}{\ln(x)}}=\lim _{x\to \infty }{\frac {\ {\frac {1}{2{\sqrt {x}}}}\ }{\frac {1}{x}}}=\lim _{x\to \infty }{\frac {\sqrt {x}}{2}}=\infty } lim x → ∞ x n e − x = lim x → ∞ x n e x = lim x → ∞ n x n − 1 e x = n lim x → ∞ x n − 1 e x = 0 {\displaystyle \lim _{x\to \infty }x^{n}e^{-x}=\lim _{x\to \infty }{x^{n} \over e^{x}}=\lim _{x\to \infty }{nx^{n-1} \over e^{x}}=n\lim _{x\to \infty }{x^{n-1} \over e^{x}}=0} lim x → 0 + ( x ln x ) = lim x → 0 + ln x 1 x = lim x → 0 + 1 x − 1 x 2 = lim x → 0 + − x = 0 {\displaystyle \lim _{x\to 0+}(x\ln x)=\lim _{x\to 0+}{\ln x \over {\frac {1}{x}}}=\lim _{x\to 0+}{{\frac {1}{x}} \over -{\frac {1}{x^{2}}}}=\lim _{x\to 0+}-x=0} lim t → 0 s i n c ( f 0 t ) ⋅ cos ( π α f 0 t ) [ 1 − ( 2 α f 0 t ) 2 ] {\displaystyle \lim _{t\to 0}\,\mathrm {sinc} (f_{0}t)\cdot {\frac {\cos \left(\pi \alpha f_{0}t\right)}{\left[1-\left(2\alpha f_{0}t\right)^{2}\right]}}} = { lim t → 0 s i n c ( f 0 t ) } ⋅ cos ( π α f 0 t ) [ 1 − ( 2 α f 0 t ) 2 ] | t = 0 {\displaystyle =\left\{\lim _{t\to 0}\,\mathrm {sinc} (f_{0}t)\right\}\cdot \left.{\frac {\cos \left(\pi \alpha f_{0}t\right)}{\left[1-\left(2\alpha f_{0}t\right)^{2}\right]}}\,\right|_{t=0}} = 1 ⋅ 1 = 1 {\displaystyle =1\cdot 1=1} lim t → 1 2 α f 0 s i n c ( f 0 t ) ⋅ cos ( π α f 0 t ) [ 1 − ( 2 α f 0 t ) 2 ] {\displaystyle \lim _{t\to {\frac {1}{2\alpha f_{0}}}}\mathrm {sinc} (f_{0}t)\cdot {\frac {\cos \left(\pi \alpha f_{0}t\right)}{\left[1-\left(2\alpha f_{0}t\right)^{2}\right]}}} = s i n c ( 1 2 α ) ⋅ lim t → 1 2 α f 0 cos ( π α f 0 t ) [ 1 − ( 2 α f 0 t ) 2 ] {\displaystyle =\mathrm {sinc} \left({\frac {1}{2\alpha }}\right)\cdot \lim _{t\to {\frac {1}{2\alpha f_{0}}}}{\frac {\cos \left(\pi \alpha f_{0}t\right)}{\left[1-\left(2\alpha f_{0}t\right)^{2}\right]}}} = s i n c ( 1 2 α ) ⋅ ( − π 2 − 2 ) {\displaystyle =\mathrm {sinc} \left({\frac {1}{2\alpha }}\right)\cdot \left({\frac {\frac {-\pi }{2}}{-2}}\right)} = sin ( π 2 α ) ⋅ α 2 {\displaystyle =\sin \left({\frac {\pi }{2\alpha }}\right)\cdot {\frac {\alpha }{2}}} 参阅 极限 参考文献 来源 L'Hôpital's Rule. [2020-10-20]. (原始内容存档于2020-12-31). 参考 [1]沈忠良, 黄葆华; 张伟明. 通信原理简明教程. 机械工业. 2012: 14. ISBN 978-7-111-37784-9. [2]Eli Maor. The Story of a Number. Princeton University Press. : 116. ISBN 0-691-05854-7. Wikiwand - on Seamless Wikipedia browsing. On steroids.