泽尔尼克多项式 是一个以1953年获诺贝尔物理学奖 荷兰物理学家 弗里茨·泽尔尼克 命名的正交多项式,分为奇、偶两类
头15个泽尔尼克多项式
20个泽尔尼克多项式 以Noll序列表示
奇多项式:
Z
n
m
(
ρ
,
φ
)
=
R
n
m
(
ρ
)
cos
(
m
φ
)
{\displaystyle Z_{n}^{m}(\rho ,\varphi )=R_{n}^{m}(\rho )\,\cos(m\,\varphi )\!}
偶多项式
Z
n
−
m
(
ρ
,
φ
)
=
R
n
m
(
ρ
)
sin
(
m
φ
)
,
{\displaystyle Z_{n}^{-m}(\rho ,\varphi )=R_{n}^{m}(\rho )\,\sin(m\,\varphi ),\!}
其中
n
≥
m
{\displaystyle n\geq m}
为非负整数,
ϕ
{\displaystyle \phi }
为方位角
0
≤
ρ
≤
1
{\displaystyle 0\leq \rho \leq 1}
为径向距离
如果 n -m 为偶数则
R
n
m
(
ρ
)
=
∑
k
=
0
n
−
m
2
(
−
1
)
k
(
n
−
k
)
!
k
!
(
n
+
m
2
−
k
)
!
(
n
−
m
2
−
k
)
!
ρ
n
−
2
k
{\displaystyle R_{n}^{m}(\rho )=\sum _{k=0}^{\tfrac {n-m}{2}}{\frac {(-1)^{k}\,(n-k)!}{k!\left({\tfrac {n+m}{2}}-k\right)!\left({\tfrac {n-m}{2}}-k\right)!}}\;\rho ^{n-2\,k}}
如果n -m 为奇数,则
R
n
m
(
ρ
)
=
0
{\displaystyle R_{n}^{m}(\rho )=0}
泽尔尼克多项式也可以表示为超几何函数
R
n
m
(
ρ
)
=
(
n
n
+
m
2
)
ρ
n
2
F
1
(
−
n
+
m
2
,
−
n
−
m
2
;
−
n
;
ρ
−
2
)
=
(
−
1
)
n
+
m
2
(
n
+
m
2
n
−
m
2
)
ρ
m
2
F
1
(
1
+
n
,
1
−
n
−
m
2
;
1
+
n
+
m
2
;
ρ
2
)
{\displaystyle {\begin{aligned}R_{n}^{m}(\rho )&={\binom {n}{\tfrac {n+m}{2}}}\rho ^{n}\ {}_{2}F_{1}\left(-{\tfrac {n+m}{2}},-{\tfrac {n-m}{2}};-n;\rho ^{-2}\right)\\&=(-1)^{\tfrac {n+m}{2}}{\binom {\tfrac {n+m}{2}}{\tfrac {n-m}{2}}}\rho ^{m}\ {}_{2}F_{1}\left(1+n,1-{\tfrac {n-m}{2}};1+{\tfrac {n+m}{2}};\rho ^{2}\right)\end{aligned}}}
Noll 用一个J数字表示 [n,m]:如下表
More information n,m, j ...
n,m
0,0
1,1
1,−1
2,0
2,−2
2,2
3,−1
3,1
3,−3
3,3
j
1
2
3
4
5
6
7
8
9
10
n,m
4,0
4,2
4,−2
4,4
4,−4
5,1
5,−1
5,3
5,−3
5,5
j
11
12
13
14
15
16
17
18
19
20
Close
径向正交性
∫
0
1
ρ
2
n
+
2
R
n
m
(
ρ
)
2
n
′
+
2
R
n
′
m
(
ρ
)
d
ρ
=
δ
n
,
n
′
.
{\displaystyle \int _{0}^{1}\rho {\sqrt {2n+2}}R_{n}^{m}(\rho )\,{\sqrt {2n'+2}}R_{n'}^{m}(\rho )\,d\rho =\delta _{n,n'}.}
角度正交性
∫
0
2
π
cos
(
m
φ
)
cos
(
m
′
φ
)
d
φ
=
ϵ
m
π
δ
|
m
|
,
|
m
′
|
,
{\displaystyle \int _{0}^{2\pi }\cos(m\varphi )\cos(m'\varphi )\,d\varphi =\epsilon _{m}\pi \delta _{|m|,|m'|},}
∫
0
2
π
sin
(
m
φ
)
sin
(
m
′
φ
)
d
φ
=
(
−
1
)
m
+
m
′
π
δ
|
m
|
,
|
m
′
|
;
m
≠
0
,
{\displaystyle \int _{0}^{2\pi }\sin(m\varphi )\sin(m'\varphi )\,d\varphi =(-1)^{m+m'}\pi \delta _{|m|,|m'|};\quad m\neq 0,}
∫
0
2
π
cos
(
m
φ
)
sin
(
m
′
φ
)
d
φ
=
0
,
{\displaystyle \int _{0}^{2\pi }\cos(m\varphi )\sin(m'\varphi )\,d\varphi =0,}
其中
ϵ
m
{\displaystyle \epsilon _{m}}
称为Neumann因子,其数值为 2 如果满足
m
=
0
{\displaystyle m=0}
,数值为 1 ,如果
m
≠
0
{\displaystyle m\neq 0}
.
径向与角度正交性
∫
Z
n
m
(
ρ
,
φ
)
Z
n
′
m
′
(
ρ
,
φ
)
d
2
r
=
ϵ
m
π
2
n
+
2
δ
n
,
n
′
δ
m
,
m
′
,
{\displaystyle \int Z_{n}^{m}(\rho ,\varphi )Z_{n'}^{m'}(\rho ,\varphi )\,d^{2}r={\frac {\epsilon _{m}\pi }{2n+2}}\delta _{n,n'}\delta _{m,m'},}
其中
d
2
r
=
ρ
d
ρ
d
φ
{\displaystyle d^{2}r=\rho \,d\rho \,d\varphi }
为 雅可比矩阵
n
−
m
{\displaystyle n-m}
与
n
′
−
m
′
{\displaystyle n'-m'}
都是偶数.
埃里克·韦斯坦因 . Zernike Polynomial . MathWorld .
Callahan, P. G.; De Graef, M. Precipitate shape fitting and reconstruction by means of 3D Zernike functions. Model. Simul. Mat. Sci. Engin. 2012, 20 : 015003. Bibcode:2012MSMSE..20a5003C . doi:10.1088/0965-0393/20/1/015003 .
Campbell, C. E. Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed. J. Opt. Soc. Am. A. 2003, 20 (2): 209. Bibcode:2003JOSAA..20..209C . doi:10.1364/JOSAA.20.000209 .
Cerjan, C. The Zernike-Bessel representation and its application to Hankel transforms. J. Opt. Soc. Am. A. 2007, 24 (6): 1609. Bibcode:2007JOSAA..24.1609C . doi:10.1364/JOSAA.24.001609 .
Comastri, S. A.; Perez, L. I.; Perez, G. D.; Martin, G.; Bastida Cerjan, K. Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations. J. Opt. Soc. Am. A. 2007, 9 (3): 209. Bibcode:2007JOptA...9..209C . doi:10.1088/1464-4258/9/3/001 .
Conforti, G. Zernike aberration coefficients from Seidel and higher-order power-series coefficients. Opt. Lett. 1983, 8 (7): 407–408. Bibcode:1983OptL....8..407C . doi:10.1364/OL.8.000407 .
Dai, G-m.; Mahajan, V. N. Zernike annular polynomials and atmospheric turbulence . J. Opt. Soc. Am. A. 2007, 24 : 139 [2015-01-29 ] . Bibcode:2007JOSAA..24..139D . doi:10.1364/JOSAA.24.000139 . (原始内容存档 于2019-07-02).
Dai, G-m. Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula . J. Opt. Soc. Am. A. 2006, 23 (3): 539 [2015-01-29 ] . Bibcode:2006JOSAA..23..539D . doi:10.1364/JOSAA.23.000539 . (原始内容存档 于2019-07-02).
Díaz, J. A.; Fernández-Dorado, J.; Pizarro, C.; Arasa, J. Zernike Coefficients for Concentric, Circular, Scaled Pupils: An Equivalent Expression. Journal of Modern Optics. 2009, 56 (1): 149–155. Bibcode:2009JMOp...56..149D . doi:10.1080/09500340802531224 .
Díaz, J. A.; Fernández-Dorado, J. Zernike Coefficients for Concentric, Circular, Scaled Pupils . [2015-01-29 ] . (原始内容存档 于2020-03-18). from The Wolfram Demonstrations Project.
Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U; Khansari, Mohammad; Jafari-Khouzani, Kourosh. Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis . Journal of Electronic Imaging. 2013, 22 (1). Bibcode:2013JEI....22a3030F . doi:10.1117/1.JEI.22.1.013030 .
Gu, J.; Shu, H. Z.; Toumoulin, C.; Luo, L. M. A novel algorithm for fast computation of Zernike moments. Pattern Recogn. 2002, 35 (12): 2905–2911. doi:10.1016/S0031-3203(01)00194-7 .
Herrmann, J. Cross coupling and aliasing in modal wave-front estimation . J. Opt. Soc. Am. 1981, 71 (8): 989 [2015-01-29 ] . Bibcode:1981JOSA...71..989H . doi:10.1364/JOSA.71.000989 . (原始内容存档 于2019-07-02).
Hu, P. H.; Stone, J.; Stanley, T. Application of Zernike polynomials to atmospheric propagation problems. J. Opt. Soc. Am. A. 1989, 6 (10): 1595. Bibcode:1989JOSAA...6.1595H . doi:10.1364/JOSAA.6.001595 .
Kintner, E. C. On the mathematical properties of the Zernike Polynomials. Opt. Acta. 1976, 23 (8): 679. Bibcode:1976AcOpt..23..679K . doi:10.1080/713819334 .
Lawrence, G. N.; Chow, W. W. Wave-front tomography by Zernike Polynomial decomposition. Opt. Lett. 1984, 9 (7): 267. Bibcode:1984OptL....9..267L . doi:10.1364/OL.9.000267 .
Liu, Haiguang; Morris, Richard J.; Hexemer, A.; Grandison, Scott; Zwart, Peter H. Computation of small-angle scattering profiles with three-dimensional Zernike polynomials. Acta Cryst. A. 2012, (A69): 278–285. doi:10.1107/S010876731104788X .
Lundström, L.; Unsbo, P. Transformation of Zernike coefficients: scaled, translated and rotated wavefronts with circular and elliptical pupils. J. Opt. Soc. Am. A. 2007, 24 (3): 569. Bibcode:2007JOSAA..24..569L . doi:10.1364/JOSAA.24.000569 .
Mahajan, V. N. Zernike annular polynomials for imaging systems with annular pupils. J. Opt. Soc. Am. 1981, 71 : 75. Bibcode:1981JOSA...71...75M . doi:10.1364/JOSA.71.000075 .
Mathar, R. J. Third Order Newton's Method for Zernike Polynomial Zeros. 2007. Bibcode:2007arXiv0705.1329M . arXiv:0705.1329 [math.NA ].
Mathar, R. J. Zernike Basis to Cartesian Transformations. Serbian Astronomical Journal . 2009, 179 (179): 107–120. Bibcode:2009SerAj.179..107M . arXiv:0809.2368 . doi:10.2298/SAJ0979107M .
Prata Jr, A.; Rusch, W. V. T. Algorithm for computation of Zernike polynomials expansion coefficients . Appl. Opt. 1989, 28 (4): 749 [2015-01-29 ] . Bibcode:1989ApOpt..28..749P . doi:10.1364/AO.28.000749 . (原始内容存档 于2019-07-02).
Schwiegerling, J. Scaling Zernike expansion coefficients to different pupil sizes . J. Opt. Soc. Am. A. 2002, 19 (10): 1937 [2015-01-29 ] . Bibcode:2002JOSAA..19.1937S . doi:10.1364/JOSAA.19.001937 . (原始内容存档 于2019-07-02).
Sheppard, C. J. R. ; Campbell, S.; Hirschhorn, M. D. Zernike expansion of separable functions in Cartesian coordinates . Appl. Opt. 2004, 43 (20): 3963 [2015-01-29 ] . Bibcode:2004ApOpt..43.3963S . doi:10.1364/AO.43.003963 . (原始内容存档 于2019-07-02).
Shu, H.; Luo, L.; Han, G.; Coatrieux, J.-L. General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes . J. Opt. Soc. Am. A. 2006, 23 (8): 1960 [2015-01-29 ] . Bibcode:2006JOSAA..23.1960S . doi:10.1364/JOSAA.23.001960 . (原始内容存档 于2019-07-02).
Swantner, W.; Chow, W. W. Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes . Appl. Opt. 1994, 33 (10): 1832 [2015-01-29 ] . Bibcode:1994ApOpt..33.1832S . doi:10.1364/AO.33.001832 . (原始内容存档 于2015-01-24).
Tango, W. J. The circle polynomials of Zernike and their application in optics. Appl. Phys. A. 1977, 13 (4): 327. Bibcode:1977ApPhy..13..327T . doi:10.1007/BF00882606 .
Tyson, R. K. Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficients. Opt. Lett. 1982, 7 (6): 262. Bibcode:1982OptL....7..262T . doi:10.1364/OL.7.000262 .
Wang, J. Y.; Silva, D. E. Wave-front interpretation with Zernike Polynomials. Appl. Opt. 1980, 19 (9): 1510. Bibcode:1980ApOpt..19.1510W . doi:10.1364/AO.19.001510 .
Barakat, R. Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials. J. Opt. Soc. Am. 1980, 70 (6): 739. Bibcode:1980JOSA...70..739B . doi:10.1364/JOSA.70.000739 .
Bhatia, A. B.; Wolf, E. The Zernike circle polynomials occurring in diffraction theory. Proc. Phys. Soc. B. 1952, 65 (11): 909. Bibcode:1952PPSB...65..909B . doi:10.1088/0370-1301/65/11/112 .
ten Brummelaar, T. A. Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike. Opt. Commun. 1996, 132 (3–4): 329. Bibcode:1996OptCo.132..329T . doi:10.1016/0030-4018(96)00407-5 .
Novotni, M.; Klein, R. 3D Zernike Descriptors for Content Based Shape Retrieval (PDF) . Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. [2015-01-29 ] . (原始内容存档 (PDF) 于2007-07-29).
Novotni, M.; Klein, R. Shape retrieval using 3D Zernike descriptors (PDF) . Computer Aided Design. 2004, 36 (11): 1047–1062 [2015-01-29 ] . doi:10.1016/j.cad.2004.01.005 . (原始内容存档 (PDF) 于2007-07-29).
Farokhi, Sajad; Shamsuddin, Siti Mariyam; Sheikh, U.U; Flusser, Jan. Near Infrared Face Recognition: A Comparison of Moment-Based Approaches (PDF) 291 (1). Springer: 129–135. 2014. doi:10.1007/978-981-4585-42-2_15 .
Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U; Khansari, Mohammad; Jafari-Khouzani, Kourosh. Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform . Digital Signal Processing. 2014, 31 (1) [2015-01-29 ] . doi:10.1016/j.dsp.2014.04.008 . (原始内容存档 于2019-06-02).