林-钱方程(Lin-Tsien equation)是林家翘-钱学森和创立的描述可压缩流体中物体跨音速运动的非线性偏微分方程[1][2]

行波解

利用Maple中的软件包TWS_solution可得林-钱方程的多种行波解[3]

u(x,y,t)=TWS_sol := {u(x, y, t) = _C1+(-(1/2)*ln(tanh(_C3+_C4*x+_C5*y+_C6*t)+1)+(1/2)*ln(tanh(_C3+_C4*x+_C5*y+_C6*t)-1))*_C2}
g[2] := {u(x, y, t) = _C1+arctan(1/\sqrt(csc(_C3+_C4*x+_C5*y+_C6*t)^2-1))*_C2}
g[2] := {u(x, y, t) = _C1+(-(1/2)*ln(coth(_C3+_C4*x+_C5*y+_C6*t)+1)+(1/2)*ln(coth(_C3+_C4*x+_C5*y+_C6*t)-1))*_C2}
g[2] := {u(x, y, t) = _C1+arctanh(1/\sqrt(1+csch(_C3+_C4*x+_C5*y+_C6*t)^2))*_C2}

找到了一个新的可积(3 + 1)维泛化; 见论文 [4]的系统(40)

行波图

Thumb
Lin-Tsien equation traveling wave plot
Thumb
Lin Tsien eq TWS extended coth
Thumb
Lin Tsien eq TWS extended csch
Thumb
Lin-Tsien nlpde animation
Thumb
Lin-Tsien nlpde 3d plot
Thumb
Lin Tsien eq extended csc arctan
Thumb
Thumb

参考文献

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.