尾波(英语:wake)是固体在划过流体(特别是液体)表面时在尾部产生的V形传播的波,例如水鸟或船舶匀速游过水体时在水面激起的后方波纹。因为由英国的开尔文男爵——物理学家威廉·汤姆森(William Thomson,1824~1907)最先对船波进行数学研究,因此也称为开尔文船波(Kelvin wake或Kelvin ship wave)。 船只尾波的鸟瞰图 从前方观测的船只尾波 数学原理 船形物体的尾波形状和福禄数 F r {\displaystyle Fr} 有密切关系。 F r = V g l {\displaystyle Fr={\frac {V}{\sqrt {gl}}}} 其中g为重力常数,V是船速,l是船的长度。 令船的长度 l = k ⋅ V 2 g {\displaystyle l=k\cdot {\frac {V^{2}}{g}}} 则 F r = 1 k {\displaystyle Fr={\frac {1}{\sqrt {k}}}} . 对于长度大而速度低的轮船,Fr数小,开尔文船波主要是长波,其波前与速度矢量的夹角比较小。 而小快艇,长度小,速度高,Fr 数大,开尔文船波则以短波长的水波为主,而波前则与速度矢量成较大的夹角。[1] 开尔文船波动研究,对于船舶的设计有重要意义,因为船舶的马力,有一部分消耗在激起船波。利用Fr数与速度成正比,与长度的平方根成反比的规律,可以利用小的模型,缩小船长 M 2 {\displaystyle M^{2}} 倍,同时缩小速度M倍,可以在实验室中模拟海上舟。[2] 多鞍点函数积分 Integrand of Kelvin Wake Integral Kelvin Ship Wake Integrand contour Maple plot 当船只以速度V驶过深水湖面,波形的幅度在相对于船只为静止的极坐标( ρ , ϕ {\displaystyle \rho ,\phi } 中在船只的速度矢量方向, ϕ = 0 {\displaystyle \phi =0} ),由下列公式表示[3] K ( ϕ , ρ ) = ∫ − π / 2 π / 2 cos ρ cos ( θ + ϕ ) cos 2 θ d θ {\displaystyle K(\phi ,\rho )=\int _{-\pi /2}^{\pi /2}\cos \rho {\frac {\cos(\theta +\phi )}{\cos ^{2}\theta }}d\theta } 其中 ρ = g r / V 2 {\displaystyle \rho =gr/V^{2}} 1 ρ = V 2 g r {\displaystyle {\frac {1}{\rho }}={\frac {V^{2}}{gr}}} 是福禄数的平方 F r 2 {\displaystyle Fr^{2}} g {\displaystyle g} 为重力常数 l {\displaystyle l} 为船的长度。 上列K函数是下列多鞍点积分的正数部分: K ( ϕ , ρ ) = ℜ ( ∫ − ∞ ∞ exp ( i ρ f ( θ , ρ ) d θ ) {\displaystyle K(\phi ,\rho )=\Re (\int _{-\infty }^{\infty }\exp(i\rho f(\theta ,\rho )d\theta )} 其中,多鞍点积分的核函数为 f ( θ , ϕ ) = − cos ( θ + ϕ ) cos 2 θ {\displaystyle f(\theta ,\phi )=-{\frac {\cos(\theta +\phi )}{\cos ^{2}\theta }}} 此核函数是一个多鞍点函数,振荡剧烈如图 求其极点, d f ( θ , ϕ ) d θ = sin ( θ + ϕ ) cos ( θ ) 2 − 2 cos ( θ + ϕ ) sin ( θ ) cos ( θ ) 3 = 0 {\displaystyle {\frac {df(\theta ,\phi )}{d\theta }}={\frac {\sin(\theta +\phi )}{\cos(\theta )^{2}}}-{\frac {2\cos(\theta +\phi )\sin(\theta )}{\cos(\theta )^{3}}}=0} 解之,得 θ 1 = arctan ( ( 1 / 4 ) ( 1 + ( 1 − 8 tan ( ϕ ) 2 ) ) tan ( ϕ ) ) = − arctan ( ( 1 / 4 ) ( − 1 + ( 1 − 8 tan ( ϕ ) 2 ) ) tan ( ϕ ) ) {\displaystyle \theta _{1}=\arctan({\frac {(1/4)(1+{\sqrt {(1-8\tan(\phi )^{2}))}}}{\tan(\phi )}})=-\arctan({\frac {(1/4)(-1+{\sqrt {(}}1-8\tan(\phi )^{2}))}{\tan(\phi )}})} 由此 ϕ 1 = 19.47 {\displaystyle \phi _{1}=19.47} 度, ϕ 2 = − 19.47 {\displaystyle \phi _{2}=-19.47} 度 这就是凯尔文船波的V型波包线的夹角,最早由凯尔文男爵发现,而且角度与船速无关.[4][5]至于波纹本身则与船速矢量的夹角为 θ = π − 19.47 = 35.3 {\displaystyle \theta =\pi -19.47=35.3} °[1] 开尔文驻相法 Kelvin Wake (Maple density plot) 开尔文船波波形 开尔文船波积分 K ( ϕ , ρ ) {\displaystyle K(\phi ,\rho )} 必须通过数值积分计算。开尔文男爵根据被积分函数在积分区间内剧烈震荡的特点,提出了驻相法(Method of Stationary Phase)。 原理:当被积分函数剧烈震荡时,除了在极点外,震荡的被积分函数正负相抵消,因此可以将此被积分函数在极点的值作为整个积分的近似,驻相法乃是拉普拉斯方法的推广。[6] 被积分函数 f ( θ , ϕ ) = − c o s ( θ + ϕ ) c o s 2 θ {\displaystyle f(\theta ,\phi )=-{\frac {cos(\theta +\phi )}{cos^{2}\theta }}} 的两个极点是: θ p = a r c t a n ( ( 1 / 4 ) ∗ ( 1 + ( 1 − 8 ∗ t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{p}=arctan({\frac {(1/4)*(1+{\sqrt {(1-8*tan(\phi )^{2}))}}}{tan(\phi )}})} θ m = − a r c t a n ( ( 1 / 4 ) ∗ ( − 1 + ( 1 − 8 ∗ t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{m}=-arctan({\frac {(1/4)*(-1+{\sqrt {(}}1-8*tan(\phi )^{2}))}{tan(\phi )}})} 令 f m = f ( θ m , ϕ ) = s i n ( ( 1 / 2 ) ∗ ϕ − ( 1 / 2 ) ∗ a r c s i n ( 3 ∗ s i n ( ϕ ) ) ) s i n ( ( 1 / 2 ) ∗ ϕ + ( 1 / 2 ) ∗ a r c s i n ( 3 ∗ s i n ( ϕ ) ) ) {\displaystyle f_{m}=f(\theta _{m},\phi )={\frac {sin((1/2)*\phi -(1/2)*arcsin(3*sin(\phi )))}{sin((1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}}} f p = f ( θ p , ϕ ) = c o s ( ( 1 / 2 ) ∗ ϕ + ( 1 / 2 ) ∗ a r c s i n ( 3 ∗ s i n ( ϕ ) ) ) c o s ( − ( 1 / 2 ) ∗ ϕ + ( 1 / 2 ) ∗ a r c s i n ( 3 ∗ s i n ( ϕ ) ) ) {\displaystyle f_{p}=f(\theta _{p},\phi )={\frac {cos((1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}{cos(-(1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}}} f b a r := 1 / 2 ∗ ( f p + f m ) {\displaystyle fbar:=1/2*(f_{p}+f_{m})} D 2 F = d 2 F ( θ , ϕ ) d θ 2 {\displaystyle D2F={\frac {d^{2}F(\theta ,\phi )}{d\theta ^{2}}}} D 2 F p = D 2 F ( θ p , ϕ ) {\displaystyle D2F_{p}=D2F(\theta _{p},\phi )} D 2 F m = D 2 F ( θ m , ϕ ) {\displaystyle D2F_{m}=D2F(\theta _{m},\phi )} Δ := ( 3 / 4 ∗ ( f m − f p ) ) ( 2 / 3 ) {\displaystyle \Delta :=(3/4*(f_{m}-f_{p}))^{(}2/3)} u = Δ 1 / 2 2 ∗ ( 1 D 2 F p + 1 − D 2 F m ) {\displaystyle u={\sqrt {\frac {\Delta ^{1/2}}{2}}}*({\frac {1}{\sqrt {D2F_{p}}}}+{\frac {1}{\sqrt {-D2F_{m}}}})} v = 2 Δ 1 / 2 ∗ ( 1 D 2 F p − 1 − D 2 F m ) {\displaystyle v={\sqrt {\frac {2}{\Delta ^{1/2}}}}*({\frac {1}{\sqrt {D2F_{p}}}}-{\frac {1}{\sqrt {-D2F_{m}}}})} K ( ϕ , ρ ) ≈ 2 ∗ π ∗ ( u ∗ c o s ( ρ ∗ f b a r ) ∗ A i r y A i ( − ρ ( 2 / 3 ) ∗ Δ ) / ρ ( 1 / 3 ) + v ∗ s i n ( ρ ∗ f b a r ) ∗ A i r y A i ( 1 , − ρ ( 2 / 3 ) ∗ Δ ) / ρ ( 2 / 3 ) ) {\displaystyle K(\phi ,\rho )\approx 2*\pi *(u*cos(\rho *fbar)*AiryAi(-\rho ^{(}2/3)*\Delta )/\rho ^{(}1/3)+v*sin(\rho *fbar)*AiryAi(1,-\rho ^{(}2/3)*\Delta )/\rho ^{(}2/3))} 开尔文船波的波峰,由下列两个参数方程式描述[7] x := X ∗ s i n ( β ) ∗ ( 1 − ( 1 / 2 ) ∗ s i n ( β ) 2 ) {\displaystyle x:=X*sin(\beta )*(1-(1/2)*sin(\beta )^{2})} y := X ∗ s i n ( β ) 2 ∗ c o s ( β ) / ( 2 ∗ M ) {\displaystyle y:=X*sin(\beta )^{2}*cos(\beta )/(2*M)} 外部链接 §36.13 Kelvin’s Ship-Wave Pattern (页面存档备份,存于互联网档案馆) 脚注Loading content...参考文献Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.