度量张量(英语:Metric tensor)在黎曼几何里面又叫黎曼度量,物理学译为度规张量,是指一用来衡量度量空间中距离,面积及角度的二阶张量。 当选定一个局部坐标系统 x i {\displaystyle x^{i}} ,度量张量为二阶张量一般表示为 d s 2 = ∑ i j g i j d x i d x j {\displaystyle \textstyle \mathrm {d} s^{2}=\sum _{ij}g_{ij}\mathrm {d} x^{i}\mathrm {d} x^{j}} ,也可以用矩阵 ( g i j ) {\displaystyle (g_{ij})} 表示,记作为G或g。而 g i j {\displaystyle g_{ij}} 记号传统地表示度量张量的协变分量(亦为“矩阵元素”)。 a {\displaystyle a} 到 b {\displaystyle b} 的弧线长度定义如下,其中参数定为t,t由a到b: L = ∫ a b ∑ i j g i j d x i d t d x j d t d t {\displaystyle L=\int _{a}^{b}{\sqrt {\sum _{ij}g_{ij}{\mathrm {d} x^{i} \over \mathrm {d} t}{\mathrm {d} x^{j} \over \mathrm {d} t}}}\mathrm {d} t} 两个切矢量的夹角 θ {\displaystyle \theta } ,设矢量 U = ∑ i u i ∂ ∂ x i {\displaystyle \textstyle U=\sum _{i}u^{i}{\partial \over \partial x_{i}}} 和 V = ∑ i v i ∂ ∂ x i {\displaystyle \textstyle V=\sum _{i}v^{i}{\partial \over \partial x_{i}}} ,定义为: cos θ = ⟨ u , v ⟩ | u | | v | = ∑ i j g i j u i v j | ∑ i j g i j u i u j | | ∑ i j g i j v i v j | {\displaystyle \cos \theta ={\frac {\langle u,v\rangle }{|u||v|}}={\frac {\sum _{ij}g_{ij}u^{i}v^{j}}{\sqrt {\left|\sum _{ij}g_{ij}u^{i}u^{j}\right|\left|\sum _{ij}g_{ij}v^{i}v^{j}\right|}}}} 若 f {\displaystyle f} 为 R n {\displaystyle \mathbb {R} ^{n}} 到 R n {\displaystyle \mathbb {R} ^{n}} 的局部微分同胚,其诱导出的度量张量的矩阵形式 G {\displaystyle G} ,由以下方程计算得出: G = J T J {\displaystyle G=J^{T}J} J {\displaystyle J} 表示 f {\displaystyle f} 的雅可比矩阵,它的转置为 J T {\displaystyle J^{T}} 。著名例子有 R 2 {\displaystyle \mathbb {R} ^{2}} 之间从极坐标系 ( r , θ ) {\displaystyle (r,\theta )} 到直角坐标 ( x , y ) {\displaystyle (x,y)} 的坐标变换,在这例子里有: x = r cos θ {\displaystyle x=r\cos \theta } y = r sin θ {\displaystyle y=r\sin \theta } 这映射的雅可比矩阵为 J = [ cos θ − r sin θ sin θ r cos θ ] . {\displaystyle J={\begin{bmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{bmatrix}}.} 所以 G = ( g i j ) = J T J = [ cos 2 θ + sin 2 θ − r sin θ cos θ + r sin θ cos θ − r cos θ sin θ + r cos θ sin θ r 2 sin 2 θ + r 2 cos 2 θ ] = [ 1 0 0 r 2 ] {\displaystyle G=(g_{ij})=J^{\mathrm {T} }J={\begin{bmatrix}\cos ^{2}\theta +\sin ^{2}\theta &-r\sin \theta \cos \theta +r\sin \theta \cos \theta \\-r\cos \theta \sin \theta +r\cos \theta \sin \theta &r^{2}\sin ^{2}\theta +r^{2}\cos ^{2}\theta \end{bmatrix}}={\begin{bmatrix}1&0\\0&r^{2}\end{bmatrix}}\ } 这跟微积分里极坐标的黎曼度量, d s 2 = d r 2 + r 2 d θ 2 {\displaystyle \mathrm {d} s^{2}=\mathrm {d} r^{2}+r^{2}\mathrm {d} \theta ^{2}} ,一致。 欧几里德几何度量 二维欧几里德度量张量: ( g i j ) = [ 1 0 0 1 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0\\0&1\end{bmatrix}}} 弧线长度转为熟悉微积分方程: L = ∫ a b ( d x 1 d t ) 2 + ( d x 2 d t ) 2 d t {\displaystyle L=\int _{a}^{b}{\sqrt {\left({\frac {\mathrm {d} x^{1}}{\mathrm {d} t}}\right)^{2}+\left({\frac {\mathrm {d} x^{2}}{\mathrm {d} t}}\right)^{2}}}\mathrm {d} t} 在其他坐标系统的欧氏度量: 极坐标系: ( x 1 , x 2 ) = ( r , θ ) {\displaystyle (x^{1},x^{2})=(r,\theta )} ( g i j ) = [ 1 0 0 ( x 1 ) 2 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0\\0&(x^{1})^{2}\end{bmatrix}}} 圆柱坐标系: ( x 1 , x 2 , x 3 ) = ( r , θ , z ) {\displaystyle (x^{1},x^{2},x^{3})=(r,\theta ,z)} ( g i j ) = [ 1 0 0 0 ( x 1 ) 2 0 0 0 1 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0&0\\0&(x^{1})^{2}&0\\0&0&1\end{bmatrix}}} 球坐标系: ( x 1 , x 2 , x 3 ) = ( r , ϕ , θ ) {\displaystyle (x^{1},x^{2},x^{3})=(r,\phi ,\theta )} ( g i j ) = [ 1 0 0 0 ( x 1 ) 2 0 0 0 ( x 1 sin x 2 ) 2 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0&0\\0&(x^{1})^{2}&0\\0&0&(x^{1}\sin x^{2})^{2}\end{bmatrix}}} 平坦的闵可夫斯基空间 (狭义相对论): ( x 0 , x 1 , x 2 , x 3 ) = ( c t , x , y , z ) {\displaystyle (x^{0},x^{1},x^{2},x^{3})=(ct,x,y,z)\,} ( g μ ν ) = ( η μ ν ) ≡ [ − 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] {\displaystyle (g_{\mu \nu })=(\eta _{\mu \nu })\equiv {\begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}}} 在一些习惯中,与上面相反地,时间ct的度规分量取正号而空间 (x,y,z)的度规分量取负号,故矩阵表示为: ( g μ ν ) = ( η μ ν ) ≡ [ 1 0 0 0 0 − 1 0 0 0 0 − 1 0 0 0 0 − 1 ] {\displaystyle (g_{\mu \nu })=(\eta _{\mu \nu })\equiv {\begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix}}} 伪黎曼度量 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.