数学分析中,分布(distribution)是广义函数的一种,由法国数学家洛朗·施瓦兹首先于二十世纪五十年代引入,因此又称施瓦兹分布(Schwartz distribution)、施瓦兹广义函数[1](Schwartz generalized function)。分布推广了普通意义上的函数概念:对于普通意义上不可导甚至不连续的函数,可以具备分布意义上的导数。事实上,任意局部可积的函数都有分布意义上的弱导数。在偏微分方程的研究中,常常使用分布来表示方程的广义解函数,因为很多时候传统意义上的解函数不存在或难以求出。分布理论在物理学和工程学中都十分有用,因为在应用中常会出现解或初始条件是分布的微分方程,例如初始条件可能是一个狄拉克δ分布。
广义函数的概念最早由谢尔盖·索伯列夫在1935年提出。1940年代末,施瓦兹等人开始建立分布理论,首次提出了一个系统清晰的广义函数理论。
接下来,我们定义Rn中开集U上的实值分布。在细微的调整之后,我们可以定义相应的复值分布,也可以将 Rn 替换为任何(仿紧)光滑流形。
首先需要定义U上的检验函数空间 D(U) (即所谓的“测试函数”),定义其上的拓扑和极限。D(U)上的所有连续线性泛函构成的空间就是分布空间。
U上的分布定义为D(U)上的连续线性泛函。也就是说,如果一个实线性泛函(或复线性泛函)满足连续性,即对D(U)中任意的收敛函数列,都有
那么就称此泛函为U上的一个分布。
另一个更具可操作性的定义是,如果D(U)上的一个实线性泛函(或复线性泛函)满足以下的条件:
- 对任意的紧子集,都存在和,使得对任意支撑集在的检验函数,都有
就称之为U上的一个分布。如果存在的正整数使得对任意的,都有,那么最小的这样的称为这个分布的阶数(order),称为一个阶分布。
U上的分布集合记为D'(U),是D(U)的拓扑对偶空间。D'(U)中的元素和D(U)中的元素之间的对偶关系可以用尖括号表示:
在弱*拓扑下,D'(U)为一个局部凸的拓扑向量空间。其中,弱*收敛的定义为:D'(U)中序列弱*收敛到当且仅当对于任意的检验函数,有
一个局部可积函数是指在U的任意紧子集上都勒贝格可积的函数。局部可积函数包括了所有的连续函数和所有的Lp可积函数。在以上定义的D(U)的拓扑中,每个局部可积的函数都对应着一个D(U)上的连续线性泛函,也就是D'(U)中的一个元素,记作。线性泛函作用在D(U)中任一个检验函数上的取值是:
一般约定,在不至于引起混淆的时候,可以将和等同起来。比如说以上的取值等式也可以记作:
可以证明,两个局部可积函数和对应的分布相同,当且仅当它们几乎处处相等。与函数的分布类似,U上的每个Radon测度都有一个对应的分布,定义为:
与函数的对应分布一样,测度对应的分布在不至于混淆的时候也可以和测度等同起来,比如将上式写成。
可以注意到,检验函数也是局部可积的,所以也有对应的分布。这些分布在D'(U)上是稠密的(对于以上定义的拓扑来说)。也就是说,任意一个分布都是某个检验函数(分布)序列收敛的极限。对任意的检验函数,都有:
- Benedetto, J.J., Harmonic Analysis and Applications, CRC Press, 1997.
- Gel'fand, I.M.; Shilov, G.E., Generalized functions 1–5, Academic Press, 1966–1968.
- Hörmander, L., The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft. 256, Springer, 1983, ISBN 3-540-12104-8, MR 0717035.
- Kleinert, H.; Chervyakov, A., Rules for integrals over products of distributions from coordinate independence of path integrals (PDF), Europ. Phys. J., 2001, C 19 (4): 743–747 [2012-07-14], Bibcode:2001EPJC...19..743K, doi:10.1007/s100520100600, (原始内容存档 (PDF)于2008-04-08).
- Kleinert, H.; Chervyakov, A., Coordinate Independence of Quantum-Mechanical Path Integrals (PDF), Phys. Lett., 2000, A 269: 63 [2012-07-14], doi:10.1016/S0375-9601(00)00475-8, (原始内容存档 (PDF)于2008-04-08).
- Rudin, W., Functional Analysis 2nd, McGraw-Hill, 1991, ISBN 0-07-054236-8.
- Schwartz, L., Sur l'impossibilité de la multiplications des distributions, C.R.Acad. Sci. Paris, 1954, 239: 847–848.
- Schwartz, L., Théorie des distributions 1–2, Hermann, 1950–1951.
- Stein, Elias; Weiss, Guido, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971, ISBN 0-691-08078-X.
- Strichartz, R., A Guide to Distribution Theory and Fourier Transforms, CRC Press, 1994, ISBN 0-8493-8273-4.
- Trèves, François, Topological Vector Spaces, Distributions and Kernels, Academic Press: 126 ff, 1967.
- M. J. Lighthill (1959). Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press. ISBN 0-521-09128-4 (requires very little knowledge of analysis; defines distributions as limits of sequences of functions under integrals)
- H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 4th edition, World Scientific (Singapore, 2006)(also available online here (页面存档备份,存于互联网档案馆)). See Chapter 11 for defining products of distributions from the physical requirement of coordinate invariance.
- V.S. Vladimirov (2002). Methods of the theory of generalized functions. Taylor & Francis. ISBN 0-415-27356-0
- Vladimirov, V.S., Generalized function, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4.
- Vladimirov, V.S., Generalized functions, space of, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4.
- Vladimirov, V.S., Generalized function, derivative of a, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4.
- Vladimirov, V.S., Generalized functions, product of, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4.
- Oberguggenberger, Michael, Generalized function algebras, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4.
存档副本. [2022-11-14]. (原始内容存档于2022-11-14).