Loading AI tools
来自维基百科,自由的百科全书
伴随勒让德多项式(Associated Legendre polynomials,又译缔合勒让德多项式、连带勒让德多项式、关联勒让德多项式)[1]是数学上对如下形式常微分方程解函数序列的称呼:
该方程是在球坐标系下求解拉普拉斯方程时得到的,在数学和理论物理学中有重要的意义。
因上述方程仅当 和 均为整数且满足 时,才在区间 [−1, 1] 上有非奇异解,所以通常把 和 均为整数时方程的解称为伴随勒让德多项式;把 和/或 为一般实数或复数时方程的解称为广义勒让德函数(generalized Legendre functions)。
当 、为整数时,方程的解即为一般的勒让德多项式。
与勒让德多项式一样,连带勒让德多项式在区间 [-1,1] 上也满足正交性。
这是因为,与勒让德方程一样,连带勒让德方程也是施图姆-刘维尔型的:
正交性的另一种表述如下,它与下面提到的球谐函数有关。
连带勒让德多项式可以由勒让德多项式求 m 次导得到:
等号右边的上标 (m) 表示求 m 次导。
连带勒让德函数(即 l, m 不一定要是整数)可以用高斯超几何函数表达为:
注意 μ 为正整数 m 时 1-μ 是伽玛函数的奇点,此时等号右边的式子应该理解为当 μ 趋于 m 时的极限。
显然连带勒让德方程在变换 m→-m 下保持不变,传统上习惯定义负数阶连带勒让德多项式为:
容易验证,这样定义的连带勒让德多项式能够使得上面的正交关系可以推广到 m 为负数的情况。
注意在个别文献(如上面的图,以及球谐函数一文)中会直接取
本文不采用这种定义。
球谐函数是球坐标下三维空间拉普拉斯方程的角度部分的解,构成一组完备的基组,有着重要的意义。
采用本文中定义的连带勒让德多项式的表达式,球谐函数可以表达为:
由连带勒让德多项式的正交关系可以直接得到球谐函数的正交关系:
式中 dΩ 是立体角元。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.