Tanhc函数定义如下[1] Tanhc 2D plot Tanhc'(z) 2D Tanhc 积分图 Tanhc integral 3D plot t a n h c ( z ) = tanh ( z ) z {\displaystyle tanhc(z)={\frac {\tanh \left(z\right)}{z}}} 复域虚部 I m ( tanh ( x + i y ) x + i y ) {\displaystyle {\it {Im}}\left({\frac {\tanh \left(x+iy\right)}{x+iy}}\right)} 复域实部 R e ( tanh ( x + i y ) x + i y ) {\displaystyle {\it {Re}}\left({\frac {\tanh \left(x+iy\right)}{x+iy}}\right)} 复域绝对值 | tanh ( x + i y ) x + i y | {\displaystyle \left|{\frac {\tanh \left(x+iy\right)}{x+iy}}\right|} 一阶微商 1 − ( tanh ( z ) ) 2 z − tanh ( z ) z 2 {\displaystyle {\frac {1-\left(\tanh \left(z\right)\right)^{2}}{z}}-{\frac {\tanh \left(z\right)}{{z}^{2}}}} 微商实部 − R e ( − 1 − ( tanh ( x + i y ) ) 2 x + i y + tanh ( x + i y ) ( x + i y ) 2 ) {\displaystyle -{\it {Re}}\left(-{\frac {1-\left(\tanh \left(x+iy\right)\right)^{2}}{x+iy}}+{\frac {\tanh \left(x+iy\right)}{\left(x+iy\right)^{2}}}\right)} 微商虚部 − I m ( − 1 − ( tanh ( x + i y ) ) 2 x + i y + tanh ( x + i y ) ( x + i y ) 2 ) {\displaystyle -{\it {Im}}\left(-{\frac {1-\left(\tanh \left(x+iy\right)\right)^{2}}{x+iy}}+{\frac {\tanh \left(x+iy\right)}{\left(x+iy\right)^{2}}}\right)} 微商绝对值 | − 1 − ( tanh ( x + i y ) ) 2 x + i y + tanh ( x + i y ) ( x + i y ) 2 | {\displaystyle \left|-{\frac {1-\left(\tanh \left(x+iy\right)\right)^{2}}{x+iy}}+{\frac {\tanh \left(x+iy\right)}{\left(x+iy\right)^{2}}}\right|} 积分函数 ∫ 0 z tanh ( x ) x d x {\displaystyle \int _{0}^{z}\!{\frac {\tanh \left(x\right)}{x}}{dx}} t a n h c ( z ) = 2 K u m m e r M ( 1 , 2 , 2 z ) ( 2 i z + π ) K u m m e r M ( 1 , 2 , i π − 2 z ) e 2 z − 1 / 2 i π {\displaystyle tanhc(z)=2\,{\frac {{\rm {KummerM}}\left(1,\,2,\,2\,z\right)}{\left(2\,iz+\pi \right){{\rm {KummerM}}\left(1,\,2,\,i\pi -2\,z\right)}{{\rm {e}}^{2\,z-1/2\,i\pi }}}}} t a n h c ( z ) = 2 H e u n B ( 2 , 0 , 0 , 0 , 2 z ) ( 2 i z + π ) H e u n B ( 2 , 0 , 0 , 0 , 2 1 / 2 i π − z ) e 2 z − 1 / 2 i π {\displaystyle tanhc(z)=2\,{\frac {{\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {z}}\right)}{\left(2\,iz+\pi \right){\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {1/2\,i\pi -z}}\right){{\rm {e}}^{2\,z-1/2\,i\pi }}}}} t a n h c ( z ) = i W h i t t a k e r M ( 0 , 1 / 2 , 2 z ) W h i t t a k e r M ( 0 , 1 / 2 , i π − 2 z ) z {\displaystyle tanhc(z)={\frac {i{{\rm {\ WhittakerM}}\left(0,\,1/2,\,2\,z\right)}}{{{\rm {WhittakerM}}\left(0,\,1/2,\,i\pi -2\,z\right)}z}}} t a n h c ( z ) = i ( e 2 z − 1 ) ( e i π − 2 z − 1 ) e 2 z − 1 / 2 i π z {\displaystyle tanhc(z)={\frac {i\left({{\rm {e}}^{2\,z}}-1\right)}{\left({{\rm {e}}^{i\pi -2\,z}}-1\right){{\rm {e}}^{2\,z-1/2\,i\pi }}z}}} t a n h c ≈ ( 1 − 1 3 z 2 + 2 15 z 4 − 17 315 z 6 + 62 2835 z 8 − 1382 155925 z 10 + 21844 6081075 z 12 − 929569 638512875 z 14 + O ( z 16 ) ) {\displaystyle tanhc\approx (1-{\frac {1}{3}}{z}^{2}+{\frac {2}{15}}{z}^{4}-{\frac {17}{315}}{z}^{6}+{\frac {62}{2835}}{z}^{8}-{\frac {1382}{155925}}{z}^{10}+{\frac {21844}{6081075}}{z}^{12}-{\frac {929569}{638512875}}{z}^{14}+O\left({z}^{16}\right))} ∫ 0 z tanh ( x ) x d x = ( z − 1 9 z 3 + 2 75 z 5 − 17 2205 z 7 + 62 25515 z 9 − 1382 1715175 z 11 + O ( z 13 ) ) {\displaystyle \int _{0}^{z}\!{\frac {\tanh \left(x\right)}{x}}{dx}=(z-{\frac {1}{9}}{z}^{3}+{\frac {2}{75}}{z}^{5}-{\frac {17}{2205}}{z}^{7}+{\frac {62}{25515}}{z}^{9}-{\frac {1382}{1715175}}{z}^{11}+O\left({z}^{13}\right))} Tanhc abs complex 3D Tanhc Im complex 3D plot Tanhc Re complex 3D plot Tanhc'(z) Im complex 3D plot Tanhc'(z) Re complex 3D plot Tanhc'(z) abs complex 3D plot Tanhc abs plot Tanhc Im plot Tanhc Re plot Tanhc'(z) Im plot Tanhc'(z) abs plot Tanhc'(z) Re plot Tanhc integral abs 3D plot Tanhc integral Im 3D plot Tanhc integral Re 3D plot Tanhc integral abs density plot Tanhc integral Im density plot Tanhc integral Re density plot Sinhc 函数 Coshc 函数 Tanc 函数 双曲正弦积分函数 [1]Weisstein, Eric W. "Tanhc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/TanhcFunction.html (页面存档备份,存于互联网档案馆) Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.