Loading AI tools
来自维基百科,自由的百科全书
能项符号是量子力学中描述多电子原子中(总)角量子数的缩写符号(实际上单个电子也可以用能项符号来描述)。具有给定电子排布的原子的每个能级不仅由电子排布来描述,还由其能项符号来描述,因为能级还取决于包括自旋在内的总角动量。考虑原子的能项符号时,通常假定存在自旋-轨道耦合现象。原子的基态能项符号由洪特规则预测。
此条目可参照英语维基百科相应条目来扩充。 (2020年7月27日) |
能项一词的使用是基于里德堡-里兹组合原理:频谱线的波数可以表示为两个能级之差。后来由玻尔模型进行了总结,该模型确定了具有量子化能级的能项(乘以hc,其中h是普朗克常数,而c是光速),并确定了与光子能量相关的光谱波数(再次乘以hc)。
对于轻原子,自旋-轨道相互作用很小,因此总角量子数L和总自旋量子数S是好量子数。 L和S之间的相互作用称为LS耦合(自旋-轨道耦合)或Russell-Saunders耦合(以Henry Norris Russell和Frederick Albert Saunders的名字命名,他们在1925年对此进行了描述[1])。用以下形式的能项符号可以很好地描述原子状态:
其中
L = | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ... |
S | P | D | F | G | H | I | K | L | M | N | O | Q | R | T | U | V | (依字母顺序)[注释 1] |
S、P、D、F四个符号是根据与s、p、d、f轨道对应的光谱线的特性得出的:锐线系(sharp)、主线系(principal)、漫线系(diffuse)和基线系(fundamental);其余的按字母顺序从G开始命名,只是省略了J。当用于描述原子中的电子状态时,能项符号通常遵循电子构型。 例如,碳原子的一个低能级的能项符号表示为1s22s22p2 3P2。 上标3表示自旋状态是三重态,因此S=1(2S+1=3),P是L=1的光谱符号,下标2是J的值。使用相同的规则,可将碳的基态表示为1s22s22p2 3P0。[3]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.