Sự đối xứng với nhau của hai điểm qua một đường thẳng From Wikipedia, the free encyclopedia
Khi đường thẳng d là đường trung trực của đoạn thẳng AB thì ta nói điểm A đối xứng với điểm B qua đường thẳng d. Khi đó đường thẳng d gọi là trục đối xứng của hai điểm A và B.
Trong không gian hai chiều hồng tâm có đối xứng trục. |
Một mặt quay có đối xứng trục trong không gian 3 chiều. |
Nói cách khác, hai điểm được gọi là đối xứng với nhau qua một đường thẳng nếu đường thẳng đó là đường trung trực của đoạn thẳng nối hai điểm đó. Đối xứng này gọi là đối xứng trục.[1]
Hai hình gọi là đối xứng với nhau qua một đường thẳng nếu mỗi điểm của hình này ở cùng khoảng cách tới đường thẳng với một điểm tương ứng thuộc hình kia, và ngược lại. Đây cũng gọi là đối xứng trục.
Trong không gian hai chiều (mặt phẳng), ảnh của một hình sau phép phản xạ đối xứng với hình đó qua một trục, trong không gian ba chiều chúng đối xứng với nhau qua một mặt phẳng.
Một hình phẳng được gọi là có trục đối xứng nếu tồn tại ít nhất một đường thẳng sao cho với mỗi điểm của hình đều có đúng một điểm tương ứng thuộc hình đó và đối xứng qua đường thẳng. Nói cách khác, hình vẫn giữ nguyên khi thực hiện phép phản xạ qua đường thẳng đó.
Các đường thẳng là đối xứng của một đường thẳng qua ba cạnh của tam giác đồng quy khi và chỉ khi đường thẳng này đi qua trực tâm của tam giác. Trong trường hợp này, điểm đồng quy nằm trên đường tròn ngoại tiếp tam giác.[2]
Cho ba đường thẳng song song đi qua ba trung điểm của ba cạnh của tam giác khi đó các đường thẳng đối xứng của ba cạnh tam giác đó qua ba đường thẳng này một cách lần lượt sẽ đồng quy tại đường tròn chín điểm của tam giác đó.[3]
Cho đường thẳng qua tâm nội tiếp của tam giác và cắt ba cạnh BC, CA, AB của tam giác lần lượt tại X, Y, Z. Lấy các điểm X′, Y′, Z′ là đối xứng của X, Y, Z qua ba đường phân giác tương ứng. Khi đó ba điểm X′, Y′, Z′ thẳng hàng.[4]
A, B, C, D, E, H, I, M, O, K, U, V, W, X, Y
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.