Мультимножина — в математиці, це множина в якій для кожного елемента запам'ятовується не лише його входження, але й кількість входжень

Формальне визначення

В теорії множин, мультимножина формально визначається як пара (A, m), де A — якась множина і m : AN функція з A в множину N (невід'ємних) натуральних чисел.

Типово записувати функцію m як множину впорядкованих пар {(a, m(a)) : aA}. Наприклад,

  • мультимножина {a, b, b} визначається як {(a, 1), (b, 2)},
  • {a, a, b} — {(a, 2), (b, 1)},
  • {a, b} — {(a, 1), (b, 1)}.

Для кожного a з A кількістю a є число m(a).

Якщо множина A скінченна, розміром мультимножини (A, m) є сума кількостей кожного елемента A:

(B, n) є підмультимножиною мультимножини (A, m) якщо

Дії

Звичайні дії над множинами об'єднання, перетин і Декартів добуток просто узагальнюються для мультимножин.

Нехай (A, m) і (B, n) — мультимножини. Тоді їх

  • Об'єднання визначається як (AB, f), де f(x) = max{m(x), n(x)}.
  • Перетин визначається як (AB, f), де f(x) = min{m(x), n(x)}.
  • Сума мультимножин визначається як (A ⊎ B, f), де f(x) = m(x) + n(x).
  • Декартів добуток визначається як (A × B, f), де f((x,y)) = m(x)n(y).

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.