Центральний момент

З Вікіпедії, вільної енциклопедії

У теорії ймовірностей та математичній статистиці, центра́льний моме́нт k-го порядку випадкової величини з дійсними значеннями це величина

,

де M математичне сподівання.

Деякі випадкові величини не мають математичного сподівання, в такому випадку значення центрального моменту не визначене. Часто, центральний момент порядку k позначається як μk.

Для неперервного одновимірного розподілу ймовірностей з густиною розподілу центральний момент порядку k відносно середнього ν дорівнює:

Для дискретного одновимірного розподілу з функцією розподілу центральний момент порядку k відносно середнього ν дорівнює:

.

Дисперсія випадкової величини — це центральний момент другого порядку.

Див. також

Джерела

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.