Remove ads
З Вікіпедії, вільної енциклопедії
Функція дільників — арифметична функція, пов'язана з дільниками цілого числа. Функція відома також під назвою функція дивізорів. Застосовується, зокрема, при дослідженні зв'язку дзета-функції Рімана і рядів Ейзенштейна для модулярних форм. Вивчалася Рамануджаном, який вивів ряд важливих рівностей в модульній арифметиці і арифметичних тотожностей.
З функцією дільників тісно пов'язана суматорна функція дільників, яка, як випливає з назви, є сумою функції дільників.
Функція сума додатних дільників σx(n) для дійсного або комплексного числа x визначається як сума x степенів додатних дільників числа n. Функцію можна виразити формулою
де означає «d ділить n».
Найважливішими частковими випадками є x = 0 і x = 1. Для позначення σ0(n) або функції кількості дільників використовуються також позначення d(n), ν(n) и τ(n) (від німецького Teiler = дільник) [1] [2]. У цьому випадку функція має просту геометричну інтерпретацію: σ0(n) = d(n) дорівнює кількості точок (x, y) з цілими координатами у «правому верхньому квадранті», що лежать на гіперболі xy = n.
Якщо x дорівнює 1, функція називається сигма-функцією або сумою дільників [3] і індекс часто опускається, так що σ(n) є еквівалентним σ1(n) [4].
Пов'язаною з σ(n) є функція s(n), що є рівною сумі власних дільників (тобто дільників, за винятком самого n) [5], тобто s(n) = σ1(n) - n.
Наприклад, σ0(12) — кількість дільників числа 12:
тоді як σ1(12) — сума всіх дільників:
і сума s(12) власних дільників є рівною:
n | Дільники | σ0(n) | σ1(n) | s(n) = σ1(n) − n | Коментарі |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | квадрат: значення σ0(n) є непарним; степінь 2: s(n) = n − 1 (майже досконале) |
2 | 1,2 | 2 | 3 | 1 | просте: σ1(n) = 1+n, так що s(n) =1 |
3 | 1,3 | 2 | 4 | 1 | просте: σ1(n) = 1+n, так що s(n) =1 |
4 | 1,2,4 | 3 | 7 | 3 | квадрат: σ0(n) є непарним; степінь 2: s(n) = n − 1 (майже досконале) |
5 | 1,5 | 2 | 6 | 1 | просте: σ1(n) = 1+n, так що s(n) =1 |
6 | 1,2,3,6 | 4 | 12 | 6 | перше досконале число: s(n) = n |
7 | 1,7 | 2 | 8 | 1 | просте: σ1(n) = 1+n, так що s(n) =1 |
8 | 1,2,4,8 | 4 | 15 | 7 | степінь 2: s(n) = n - 1 (майже досконале) |
9 | 1,3,9 | 3 | 13 | 4 | квадрат: σ0(n) є непарним |
10 | 1,2,5,10 | 4 | 18 | 8 | |
11 | 1,11 | 2 | 12 | 1 | просте: σ1(n) = 1+n, так що s(n) =1 |
12 | 1,2,3,4,6,12 | 6 | 28 | 16 | перше надлишкове число: s(n) > n |
13 | 1,13 | 2 | 14 | 1 | просте: σ1(n) = 1+n, так що s(n) =1 |
14 | 1,2,7,14 | 4 | 24 | 10 | |
15 | 1,3,5,15 | 4 | 24 | 9 | |
16 | 1,2,4,8,16 | 5 | 31 | 15 | квадрат: σ0(n) є непарним; степінь 2: s(n) = n - 1 (майже досконале) |
σ0(n) | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 2 | 2 | 3 | 2 | 4 | 2 | 4 | 3 | 4 | 2 | |
12+ | 6 | 2 | 4 | 4 | 5 | 2 | 6 | 2 | 6 | 4 | 4 | 2 |
24+ | 8 | 3 | 4 | 4 | 6 | 2 | 8 | 2 | 6 | 4 | 4 | 4 |
36+ | 9 | 2 | 4 | 4 | 8 | 2 | 8 | 2 | 6 | 6 | 4 | 2 |
48+ | 10 | 3 | 6 | 4 | 6 | 2 | 8 | 4 | 8 | 4 | 4 | 2 |
60+ | 12 | 2 | 4 | 6 | 7 | 4 | 8 | 2 | 6 | 4 | 8 | 2 |
72+ | 12 | 2 | 4 | 6 | 6 | 4 | 8 | 2 | 10 | 5 | 4 | 2 |
84+ | 12 | 4 | 4 | 4 | 8 | 2 | 12 | 4 | 6 | 4 | 4 | 4 |
96+ | 12 | 2 | 6 | 6 | 9 | 2 | 8 | 2 | 8 | 8 | 4 | 2 |
108+ | 12 | 2 | 8 | 4 | 10 | 2 | 8 | 4 | 6 | 6 | 4 | 4 |
120+ | 16 | 3 | 4 | 4 | 6 | 4 | 12 | 2 | 8 | 4 | 8 | 2 |
132+ | 12 | 4 | 4 | 8 | 8 | 2 | 8 | 2 | 12 | 4 | 4 | 4 |
σ1(n) | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 3 | 4 | 7 | 6 | 12 | 8 | 15 | 13 | 18 | 12 | |
12+ | 28 | 14 | 24 | 24 | 31 | 18 | 39 | 20 | 42 | 32 | 36 | 24 |
24+ | 60 | 31 | 42 | 40 | 56 | 30 | 72 | 32 | 63 | 48 | 54 | 48 |
36+ | 91 | 38 | 60 | 56 | 90 | 42 | 96 | 44 | 84 | 78 | 72 | 48 |
48+ | 124 | 57 | 93 | 72 | 98 | 54 | 120 | 72 | 120 | 80 | 90 | 60 |
60+ | 168 | 62 | 96 | 104 | 127 | 84 | 144 | 68 | 126 | 96 | 144 | 72 |
72+ | 195 | 74 | 114 | 124 | 140 | 96 | 168 | 80 | 186 | 121 | 126 | 84 |
84+ | 224 | 108 | 132 | 120 | 180 | 90 | 234 | 112 | 168 | 128 | 144 | 120 |
96+ | 252 | 98 | 171 | 156 | 217 | 102 | 216 | 104 | 210 | 192 | 162 | 108 |
108+ | 280 | 110 | 216 | 152 | 248 | 114 | 240 | 144 | 210 | 182 | 180 | 144 |
120+ | 360 | 133 | 186 | 168 | 224 | 156 | 312 | 128 | 255 | 176 | 252 | 132 |
132+ | 336 | 160 | 204 | 240 | 270 | 138 | 288 | 140 | 336 | 192 | 216 | 168 |
σ2(n) | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 5 | 10 | 21 | 26 | 50 | 50 | 85 | 91 | 130 | 122 | |
12+ | 210 | 170 | 250 | 260 | 341 | 290 | 455 | 362 | 546 | 500 | 610 | 530 |
24+ | 850 | 651 | 850 | 820 | 1050 | 842 | 1300 | 962 | 1365 | 1220 | 1450 | 1300 |
36+ | 1911 | 1370 | 1810 | 1700 | 2210 | 1682 | 2500 | 1850 | 2562 | 2366 | 2650 | 2210 |
48+ | 3410 | 2451 | 3255 | 2900 | 3570 | 2810 | 4100 | 3172 | 4250 | 3620 | 4210 | 3482 |
60+ | 5460 | 3722 | 4810 | 4550 | 5461 | 4420 | 6100 | 4490 | 6090 | 5300 | 6500 | 5042 |
72+ | 7735 | 5330 | 6850 | 6510 | 7602 | 6100 | 8500 | 6242 | 8866 | 7381 | 8410 | 6890 |
84+ | 10500 | 7540 | 9250 | 8420 | 10370 | 7922 | 11830 | 8500 | 11130 | 9620 | 11050 | 9412 |
96+ | 13650 | 9410 | 12255 | 11102 | 13671 | 10202 | 14500 | 10610 | 14450 | 13000 | 14050 | 11450 |
108+ | 17220 | 11882 | 15860 | 13700 | 17050 | 12770 | 18100 | 13780 | 17682 | 15470 | 17410 | 14500 |
120+ | 22100 | 14763 | 18610 | 16820 | 20202 | 16276 | 22750 | 16130 | 21845 | 18500 | 22100 | 17162 |
132+ | 25620 | 18100 | 22450 | 21320 | 24650 | 18770 | 26500 | 19322 | 27300 | 22100 | 25210 | 20740 |
Випадки , і так далі входять в послідовності A001157, A001158, A001159, A001160, A013954, A013955 …
Два ряди Діріхле, із функцією дільників:
і при позначенні d(n) = σ0(n) зокрема
Інший ряд, де використовуються ці функції:
Ряд Ламбера, із функцією дільників:
для будь-якого комплексного |q| ≤ 1 і a.
Ця сума зустрічається також в рядах Фур'є для рядів Ейзенштейна і в інваріантах еліптичних функцій Вейєрштраса.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.