Угнута (увігнута) функція, або опукла вгору функція[1] — протилежність до опуклої функції. До угнутих функцій належать неперервні функції з від'ємною другою похідною.

Довільна неперервна фукнція не обов'язково або опукла, або угнута, але вона може бути опуклою або угнутою на певних інтервалах, розділених точками перегину.

Означення

Thumb
Ілюстрація угнутості функції

Дійсна функція визначена на інтервалі (або на будь-якій опуклій множині C деякого векторного простору) називається увігнутою, якщо для в її області визначення маємо

Функція називається строго увігнутою, якщо


Для функції це означення просто стверджує, що точки на графіку є вище прямої, що з'єднує точки та .

Функція є квазіувігнутою, якщо множини верхнього контуру функції є опуклими множинами.[2]

Властивості

Приклади

  • Функції і є увігнутими, оскільки їхні другі похідні завжди від'ємні.
  • Будь-яка лінійна функція одночасно й увігнута, й опукла.
  • Функція є увігнутою на відрізку .
  • Функція , де є визначником додатноозначеної матриці , є увігнутою.[3]

Див. також

Джерела

Посилання

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.