Loading AI tools
узагальнення ентропії Больцмана — Гіббса З Вікіпедії, вільної енциклопедії
У статистичній термодинаміці ентропія Цалліса — узагальнення стандартної ентропії Больцмана — Гіббса, запропоноване Константіно Цаллісом (Constantino Tsallis)[1] 1988 року для випадку неекстенсивних (неадитивних) систем. Його гіпотеза базується на припущенні, що сильна взаємодія в термодинамічно аномальній системі призводить до нових ступенів вільності, до зовсім іншої статистичної фізики небольцманівського типу.
Нехай — розподіл імовірностей і — будь-яка міра на , для якої існує абсолютно неперервна відносно функція . Тоді ентропія Цалліса визначається як
Зокрема, для дискретної системи, що перебуває в одному з доступних станів з розподілом імовірностей ,
У разі міри Лебега , тобто коли — неперервний розподіл з густиною , заданою на множині ,
У цих формулах — деяка додатна константа, яка визначає одиницю вимірювання ентропії й у фізичних формулах служить для зв'язки розмірностей, як, наприклад, стала Больцмана. З точки зору задачі оптимізації ентропії ця константа є несуттєвою, тому для спрощення часто вважають .
Параметр — безрозмірна величина (), яка характеризує ступінь неекстенсивності (неадитивності) даної системи. У границі при , ентропія Цалліса збігається до ентропії Больцмана — Гіббса. При ентропія Цалліса є увігнутим функціоналом від розподілу ймовірностей і, як звичайна ентропія, досягає максимуму за рівномірного розподілу. При функціонал є опуклим і за рівномірного розподілу досягає мінімуму. Тому для пошуку рівноважного стану ізольованої системи при ентропію Цалліса потрібно максимізувати, а при — мінімізувати[2]. Значення параметра — це вироджений випадок ентропії Цалліса, коли вона не залежить від , а залежить лише від , тобто від розміру системи (від у дискретному випадку).
У безперервному випадку іноді вимагають, щоб носій випадкової величини був безрозмірним[3]. Це забезпечує коректність функціоналу ентропії з точки зору розмірності.
Історично першими вираз для ентропії Цалліса (точніше, для часткового її випадку при ) отримали Дж. Хаврда і Ф. Чарват (J. Havrda і F. Charvát)[4] 1967 року. Разом з тим, при ентропія Цалліса є частковим випадком f-ентропії[5] (при f-ентропією є величина, протилежна ентропії Цалліса).
Ентропію Цалліса можна отримати зі стандартної формули для ентропії Больцмана — Гіббса заміною використовуваної в ній функції функцією
— так званий q-деформований логарифм або просто q-логарифм (у границі при збігається з логарифмом)[6]. К. Цалліс використовував[7] дещо іншу формулу q-логарифма, яка зводиться до наведеної тут заміною параметра на .
Ще один спосіб[7] отримати ентропію Цалліса ґрунтується на співвідношенні, справедливому для ентропії Больцмана — Гіббса:
Неважко бачити, що якщо замінити в цьому виразі звичайну похідну на q-похідну (відому також як похідна Джексона), виходить ентропія Цалліса:
Аналогічно для неперервного випадку:
Нехай є дві незалежні системи і , тобто такі системи, що в дискретному випадку спільна ймовірність появи двох будь-яких станів і в цих системах дорівнює добутку відповідних імовірностей:
а в неперервному — спільна густина розподілу ймовірностей дорівнює добутку відповідних густин:
де , — області значень випадкової величини в системах і відповідно.
На відміну від ентропії Больцмана — Гіббса і ентропії Реньї, ентропія Цалліса, загалом, не володіє адитивністю, і для сукупності систем виконується[7]
Оскільки умова адитивності для ентропії має вигляд
відхилення параметра від характеризує неекстенсивність (неадитивність) системи. Ентропія Цалліса є екстенсивною тільки при .
Поряд з ентропією Цалліса, розглядають також сімейство несиметричних мір розбіжності (дивергенції) Цалліса між розподілами ймовірностей зі спільним носієм. Для двох дискретних розподілів з імовірністю і , , дивергенція Цалліса визначається як[8]
У неперервному випадку, якщо розподіли і задані густинами і відповідно, де ,
На відміну від ентропії Цалліса, дивергенція Цалліса визначена при . Несуттєва додатна константа в цих формулах, як і для ентропії, задає одиницю виміру дивергенції і часто опускається (покладається рівною ). Дивергенція Цалліса є окремим випадком α-дивергенції[9] (з точністю до несуттєвої константи) і, як α-дивергенція, є опуклою за обома аргументами за всіх . Дивергенція Цалліса також є окремим випадком f-дивергенції.
Дивергенці. Цалліса можна отримати з формули для дивергенції Кульбака — Лейблера підстановкою в неї q-деформованого логарифма, визначеного вище, замість функції . У границі при дивергенція Цалліса сходиться до дивергенції Кульбака — Лейблера.
Ентропія Реньї та ентропія Цалліса еквівалентні[8] з точністю до монотонного перетворення, що не залежить від розподілу станів системи. Те саме стосується відповідних дивергенцій. Розглянемо, наприклад, ентропію Реньї для системи з дискретним набором станів :
Дивергенція Реньї для дискретних розподілів з імовірністю і , :
У цих формулах додатна константа має таке саме значення, як і у формалізмі Цалліса.
Легко бачити, що
де функція
визначена на всій числовій осі і неперервно зростає за (при вважаємо ). Наведені співвідношення мають місце і в неперервному випадку.
Попри наявність зв'язку з цим, слід пам'ятати, що функціонали у формалізмі Реньї та Цалліса мають різні властивості:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.