Loading AI tools
Vikipedi'den, özgür ansiklopediden
Kristalleşme, bir eriyikten ya da nadiren direkt olarak bir gazdan, çökeltme yoluyla katı kristal yaratma sürecidir. Kristalleşme ayrıca, bir saf katı kristal fazının ortaya çıktığı büyük miktarda erimiş madde transferini içeren bir kimyasal katı-sıvı ayırma tekniğidir. Kimya mühendisliğinde kristalleşme bir kristalizör olarak ortaya çıkar. Kristalleşme bu nedenle kimyasal reaksiyon sonucu çökelme ile karşılaştırılınca, bir çözücü içindeki çözünen maddenin çözünebilirlik koşullarının değişmesiyle elde edilen bir çökelti görünüşündedir (durumundadır).
Kristalleşme süreci iki önemli olgudan oluşur, çekirdeklenme ve kristal büyümesi. Çekirdeklenme, mevcut çalışma koşulları altında kararlı hale gelmesi için, nanometre ölçeğinde (küçük bir bölgede çözünen madde konsantrasyonunu yükselterek), çözünen madde içindeki dağınık molekülleri kümeler halinde toplamak için yapılan bir adımdır. Bu kararlı kümeler çekirdeği oluşturmaktadır. Bununla birlikte, kümeler kararlı değilse çözülürler. Bu nedenle, kümelerin kararlı bir çekirdek oluşturmaları için kritik bir büyüklüğe ulaşmaları gerekir. Bu tür kritik boyut çalışma koşulları tarafından dikte edilir (veya belirlenir) (sıcaklık, aşırı doygunluk vb.). Çekirdeklenme aşaması, atomların dizilişinin ve periyodik olarak belirlendiği, kristal yapının tanımlandığı bir aşamadır. – “kristal yapı”nın, kristalin iri ölçekli özelliklerinin (boyut ve şekil) kristalin içsel yapısının bir sonucu olmamasına karşın atomların göreceli olarak düzenlemesini ifade eden özel bir terim olduğu not edilmelidir.
Kristal büyüme, çekirdeğin kritik küme boyuta ulaşmada başarılı olduğunu gösteren takip eden büyümedir. Çekirdeklenme ve büyüme aşırı doyma var olduğunda aynı anda oluşmaya devam eder. Aşırı doyma kristalleşmenin itici gücüdür, bu yüzden çekirdeklenme oranı ve büyüme çözeltideki aşırı doyma ile sürdürülür. Koşullara bağlı olarak, çekirdeklenme veya büyüme diğeri üzerinde baskın olabilir ve bir sonuç olarak, değişik boyutlarda ve şekilerde kristaller elde edilir (kristal şekil ve boyutunun kontrolü sanayi üretiminde en önemli kriterlerden birisidir, örneğin tıbbi ürünler). Çalışma şartlarının çözeltinin tekrar aşırı doyumunu sağlayacak şekilde dengesinin değişmediği durumda aşırı doyma bittikten sonra katı-sıvı sistemi dengeye gelir ve kristalleşme tamamlanır.
Birçok bileşik farklı kristal yapılar ile kristalize olma yeteneğine sahiptir, bu poliforfizm (çok biçimli) olarak adlandırılan bir fenomendir. Her polimorf aslında farklı fiziksel özellik gösteren aynı bileşik kristal ve katı haldeki termodinamik polimoftur, örneğin çözünme hızı, şekil (yüzeyler arasındaki açı ve büyüme oranları), erime noktası vb. Bu nedenle, poliforfizm kristal ürünlerin endüstriyel üretiminde büyük öneme sahiptir.
Kristalleşme içeren doğal süreçlerin birçok örneği vardır.
Jeolojik zaman ölçeği işlemi örnekleri:
Olağan zaman ölçeği süreci örnekleri:
Kristalleşme için (aynı zamanda yeniden kristalleşmeye bakınız) doymuş bir çözelti olmalıdır. Bunun anlamı, çözeltinin, bir dengenin sağlandığı (doymuş çözelti) çok fazla çözünmüş madde (molekül veya iyon) içeren bir çözelti olduğudur. Bu çeşitli yöntemlerle elde edilebilir,
Çözücü buharlaştırma gibi diğer yöntemler de kullanılabilir. Küresel kristalleştirme ilaçların formüllerinde bazı avantajlar sağlar (akışkanlık ve biyo-yararlanım).
Malzeme endüstrisi açısından bakıldığında:
Makroskobik (iri ölçekli) kristal üretimi: kitlesel üretim ve/veya mükemmellik için “zaman ölçeği hızlandırıcı” yöntemi ile doğa-benzeri kristal talebini karşılamak. İyonik kristal üretimi. o Kovalent kristal üretimi. - Ufak boyutlu kristaller: o Toz, kum ve küçük boyutlular: toz ve kontrollü (nano-teknolojik meyveler) şekil için kullanılan yöntemler. • Kütlesel-üretim: kimya sanayi, tuz-toz üretimi gibi. • Numune üretimi: malzeme karakterizasyonu için ufak boyutlu kristallerin küçük üretimi. Kontrollü yeniden-kristalleştirme olağandışı kristal temini için önemli bir yöntemdir, bu, tipik bir kristal molekülü içinde nükleer kuvvetleri ve moleküler yapıyı ortaya çıkarmayı gerektirir. Birçok teknikler, x-ışını kristalografisi ve NMR spektroskopisi gibi, biyo-makromoleküller ve inorganik bileşikler, muazzam bir çeşitlilik içeren moleküllerin yapılarını belirlemek için kimya ve biyokimya alanlarında kullanılır. o İnce film üretimi.
Kristal saflığını doğrulamak ve/veya geliştirmek (çok saf madde elde edilmesi) için kullanılır.
Kristalleştirme, besleme akımını soğutarak veya arzu edilen kristali oluşturmak için çökeltici madde ekleyerek çözünürlüğü düşürerek son derece saf bir biçimde bir sıvı besleme akımından ürünü ayırır.
İyi biçimdeki kristallerin saf olması beklenir, çünkü her bir molekül veya iyon çözeltiden ayrılırken bulunduğu kristal kafese mükemmel şekilde uymalıdır. Yabancı maddeler normal olarak kafesle uyumlu değildir, bu nedenle tercihan çözelti içinde kalacaklardır. Dolayısıyla, moleküler tanımlama kristallerin saflaştırılmasında ana ilkedir. Bununla birlikte, nihai kristalin saflık düzeyinin azalmasından dolayı kafes içinde kirliliğe neden olan örnekler vardır. Ayrıca, bazı durumlarda, bir çözücüden oluşan kafes çözücü madde içinde olabilir. Ek olarak, kristal form içinde çözücü “hapsedilmiş” (sıvı durumda) olabilir ve bu fenomen “katılma” olarak adlandırılır.
Kristalleştirme için ana endüstriyel işlemler ekipmanı.
1. Tank kristalizatörler: Tank kristalizasyon halen bazı özel durumlarda kullanılan eski bir yöntemdir. Doygun çözümler, tank kristalizasyonunda, açık tankların soğutulmasına izin verir. Bir süre sonra ana sıvı süzülür ve kristaller ayrılır. Çekirdeklenme ve kristal boyunu kontrol etmek zordur. Tipik olarak işçilik maliyetleri çok yüksektir.
Bir kristalizasyon işlemi doğası gereği son derece değişken ve kontrolü zor olduğundan termodinamik ve kinetik faktörler tarafından yönetilir. Kirlilik seviyesi, karıştırma rejimi, tank tasarımı ve soğutma profili gibi faktörler üretilen kristallerin şeklinde, sayısında ve boyutunda önemli bir etki yapar.
Şimdi kendinizi harici bir kaynak tarafından ısıtılan saf ve mükemmel bir kristal içindeki bir molekül yerine koyun. Bazı keskin tanımlı sıcaklıklarda, bir çan çalar, komşular terk edilir ve karmaşık mimarideki kristal bu sıvının üzerine çöker. Termodinamik kitabı bunun entropi nedeniyle erime olduğunu söyler, S, moleküllerin mekânsal rastgele yerleşiminin yardımıyla sistemin kazandığı içsel enerjinin (entalpi) üstesinden gelmesini, H, kristal paketlerindeki baskının kırılmasından ortaya çıkan kaybı ifade eder.
Bu kural sıcaklık arttığı zaman bazı istisnalara göz yumar. Aynı şekilde, erimenin üzerindeki soğutmada, sıcaklık aynı kalsa da çan tekrar çalmalıdır ve moleküller aynı kristal form biçiminde olsalar da geri tıklanmalıdır. (click - özel bir anlamı var mı?). Sistem içindeki moleküllerin sıralaması nedeniyle entropinin azalması, evrenin entropisinin artmasına neden olan füzyon nedeniyle ısı salınımı, çevredeki rastgele ısı dağılımıyla telafi edilir.
Ancak, sıvıların bu yolla soğutma üzerindeki davranışlarında kurala göre bir istisna vardır; termodinamiğin ikinci prensibine rağmen kristalleşme daha düşük ısılarda oluşur (aşırı soğutma). Bu, bir kristalin oluşumundan daha kolay imha olması anlamına gelebilir. Benzer şekilde, elde edilen çözeltiden tekrar güzel bir kristalin büyümesi, mükemmel bir kristalin çözücü içinde erimesinden genellikle çok daha kolaydır. Bir kristalin devinimsel olarak çekirdeklenmesi ve gelişmesi termodinamik kontrole tercih edilir.
Yukarıda da belirtildiği gibi, bir kristal yapılandırma veya iyi modelleme sonrasında oluşan bir kristal, moleküler düzeyde etki eden kuvvetler ile dikte ettirilir. Bunun bir sonucu olarak, bir kristal kendi oluşum sürecindeki ortamda çözünen konsantrasyonun durumu değişmeden önce belirli bir kritik değere ulaşır. Katı oluşumu, belirli bir sıcaklık, basınç koşullarında ve çözünürlük eşiğinin altında imkânsızdır, teorik çözünürlük düzeyinden daha yüksek bir yoğunlaşmada meydana gelebilir. Kristalleşme limitindeki çözünen yoğunluğunun gerçek değeri ve teorik (statik) çözünürlük eşiği arasındaki fark, doygunluk ve kristalleşme dinamiklerinin temel bir faktörü olarak adlandırılır. Doygunluk, hem ilk çekirdeklenme adımı ve takip eden büyümenin hem de doymuş ya da doymamış koşulların ortaya çıkmasında itici güçtür.
Çekirdeklenme, bir sıvı çözeltiden katı kristal oluşumu gibi küçük bir bölgedeki faz değişikliğinin başlamasıdır. Bu yarı kararlı denge durumu bir homojen faz içindeki molekül düzeyindeki hızlı lokal dalgalanmaların bir sonucudur. Toplam çekirdeklenme iki çekirdeklenme kategorisinin toplam etkisidir - birincil ve ikincil.
Birincil çekirdeklenme, başka kristallerin olmadığı durumda ilk kristal oluşumudur ya da sistem üzerinde başka kristaller varsa bunların süreç üzerinde herhangi bir etkisi yoktur. Bu iki durumu ortaya çıkarabilir. Birincisi katı maddelerden ile herhangi bir şekilde etkilenmeyen homojen çekirdeklenmedir. Bu katı maddeler herhangi bir yabancı maddenin parçacığını ve kristalizör tankının çeperlerini içerir. İkinci kategori, daha sonraki heterojen çekirdeklenmedir. Bu durum, yabancı parçacıkların olmamasının aksine katı yabancı maddedeki parçacıklar çekirdeklenme oranında artış ortaya çıkarır. Homojen çekirdeklenme, çekirdeklenmenin harekete geçeceği bir katı yüzey olmadan çekirdeklenmenin başlaması için yüksek enerji gereksinimi nedeniyle pratikte nadiren meydana gelir.
Birincil çekirdeklenme (homojen ve heterojenin her ikisi de) aşağıda modellenmiştir.
B=dN/dt=kn(c-c*)n
- B, birim zamanda birim hacim başına oluşan çekirdek sayısı. - N, birim hacimdeki çekirdeklerin sayısı. - Knp, hız sabiti. - c, anlık çözünen yoğunlaşması. - c*, doygunluğun çözünen yoğunlaşması. - (c-c*), aşırı doygunluk olarak da bilinir. - n, deneysel bir üsttür, 10’a kadar çıkabilir, ancak genellikle 3 ve 4 arasındadır.
İkincil çekirdeklenme magmadaki mikroskobik kristallerin var olması etkisine dayandırılan çekirdek oluşmasıdır. Bilinen ikincil kristalleşmenin ilk tipi sıvı kesmedir, diğeri kristallerin kendilerinden veya zaten mevcut olan kristaller arasındaki ya da katı bir yüzeyle meydana gelen çarpışmalardır. Sıvı kesim çekirdeklenme, bir kristalde yüksek hızdaki sıvı hareketinin çekirdekleri süpürerek olmazsa kristal içine dâhil olarak bunun sonucunda çekirdek süpürülmesiyle yeni kristal oluşumunun meydana gelmesidir. Temaslı çekirdeklenmenin çekirdeklenme için en etkili ve yaygın yöntem olduğu bulunmuştur. Faydaları şunlardır.
- Kararsız operasyon olmadan kolay kontrol sağlayan doygunluğun oranlanması ve düşük kinetik diziliş. - İyi kalite için en uygun büyüme oranı sayesine düşük doygunluğun ortaya çıkması. - Yeni kristallerin içindeki mevcut kristallerin çarpışarak kırılmasını önleyerek düşük enerji ihtiyacı. - Nicel temel prensiplerin zaten izole edilmiş olması ve uygulamaya dahil edilmesi.
Aşağıdaki örnek basit olmasına rağmen sık sık ikincil çekirdeklenmeye örnek olarak kullanılır.
B=dN/dt=k1MjT(c-c*)b
- k1, hız sabiti. - MT, süspansiyon yoğunluğu - j, 1-5 arasında ampirik üs, genellikle 1’dir. - b, 5’e kadar uzanan ampirik üs, genellikle 2’dir.
Bir kere ilk küçük kristal, çekirdek oluşması ardışık tabakalardaki boyutunu artırarak kristalde çözünerek dokunan (veya bitişik) moleküller için bir buluşma noktası gibi işlev görür (aşırı doygunluktan dolayı kararsızsa). Büyüme modeli şekilde gösterildiği gibi, her rengin aynı çözünen kütleyi gösterdiği soğan halkalarına benzer; bu kütle büyüyen kristalin artan yüzey alanı nedeniyle daha ince tabakalar oluşturur. Aşırı doygun çözünen kütlenin orijinal çekirdeği bir zaman birimi içinde ele geçirilebilmesi, büyüme oranı kg/m²*h olarak ifade edilen bir işlem olup özel bir sabit olarak adlandırılır. Büyüme hızı örneğin çözeltinin yüzey basıncı, basınç, ısı, çözelti içindeki göreli kristal hızı, Reynolds sayısı ve benzerleri gibi çeşitli fiziksel faktörlerden etkilenir.
Kontrolün temel değerleri şunlardır:
- Aşırı doygunluk değeri, kristalin büyümesi için mevcut çözünen madde miktarı indexi; - Kristaldeki çözünen maddeyi sabitleme kapasitenin göstergesi olarak birim akışkan kütledeki toplam kristal yüzeyi; - Alıkonma süresi, var olan bir kristal ile temas eden çözünen maddenin molekül olasılığı göstergesi; - Akış modeli, yine var olan bir kristal ile temas eden çözünen maddedin molekül olasılığı göstergesi (düzgün akışta yüksek, türbülanslı daha düşük, ancak temas olasılığında tersi uygulanır).
Diğerlerinin kötü ve iyi tasarlanmış kristalleştirme arasındaki farkı tanımlaması çözeltinin fiziksel özelliklerinin akıbetinin ilk değeridir.
Bir kristal ürününün berraklık boyut aralığı ve görünümü kristalleştirmede son derece önemlidir. Eğer kristallerin işlemlerine devam edilmek isteniyorsa, bir örnek büyük kristaller için yıkama, filtreleme, ulaşım ve depolama çok önemlidir. Büyük kristalleri çözeltiden filtrelemek küçük kristalleri filtrelemekten daha kolay olduğu aslında önemli bir yalandır. Ayrıca, daha büyük kristallerin hacim oranına göre daha küçük yüzeye sahip olmaları daha yüksek saflığa işaret eder. Kristallerin ana çözeltiden ayırmak için yıkanması esnasında oluşan daha küçük bir kayıp nedeniyle ve saflık içeren ana çözeltinin daha az tutulması yüksek saflığın nedenidir. Teorik kristal boyut dağılımı, nüfus dengesi teorisi (nüfus dengesi denklemleri kullanarak) adlı oldukça karmaşık matematiksel işlem ile çalışma koşullarının bir fonksiyonu olarak tahmin edilebilir.
Yukarıda görüldüğü gibi çözünürlüğü etkileyen temel faktörler şunlardır.
Yani kristalleştirme süreçlerini iki temel tür olarak tanımlayabiliriz.
Aslın bu kısım, soğutmanın buharlaştırma yoluyla gerçekleştirilerek çözeltinin yoğunlaşma zamanıyla aynı zaman elde edildiği hibrid sistemler var olduğundan beri kesin değildir,
Bir kristalleştirme işlemi kimya mühendisliğinde sıklıkla ayırıcı billurlaşma olarak anılır. Bu yukarıda bahsedilenlerden özel uygulamadan daha farklı bir (veya her ikisinden) süreç değildir.
Uygulama
Birçok çözücü içinde eriyen birçok kimyasal bileşik, çözünürlüğün eşik bir sıcaklık ile arttığı direkt çözünürlük olarak bilinen durumu göstermektir. Böylece, her ne zaman koşullar olumlu olsa da sadece çözeltinin basitçe soğutulması kristal oluşumu ile sonuçlanır. Burada soğutma göreceli bir terimdir: östenit kristali 1000 °C nin üzerinde çeliğe dönüşür. Bu kristalleşme işleminin bir örneği kristal formundaki sodyum sülfattan Glauber tuzu üretilmesidir. Resimde, denge sıcaklığı x-ekseninde, yoğunlaşma dengesi (doymuş çözelti içinde çözünen kütlenin yüzdesi olarak) de y-eksenindedir, burada sülfat çözünürlüğünün 32,5 °C nin altında hızla azaldığı açıktır. Sıcaklığı 0 °C dereceye soğutulan 30 °C derecede doymuş bir çözelti varsayalım (bunun donma noktası alçalması ile olanaklı olduğunu unutmayın). Bir kütle sülfat çökeltisi, çözünürlük değişiminin %29 dan (denge değeri 30 °C) yaklaşık olarak %4,5 (0 °C de) karşılık geldiği durumda gerçekleşir - aslında, sonuç yoğunluğun artan yan etkiye sahip olduğu ve hidrat suyuna sülfat eklenmesinden beri daha büyük bir kristal kütlesi çöktürülmüştür. Kristal soğutmanın kullanılmasında elbette bir sınırlama vardır.
- Pek çok çözünen düşük sıcaklıklarda hidrat şeklinde çöker: önceki bu kabul edilebilir ve hatta yararlıdır, ama ne zaman zararlı olabilir, örneğin, çok sulu bir hidratı kararlı hidrat kristalli formuna getirmek için var olan sudan daha fazlası gerekir: sadece tek bir hidrat çözelti bloğu oluşacak - bu kalsiyum klorür durumunda meydana gelir; - Maksimum aşırı doygunluk en soğuk noktalarda meydana gelecektir. Bu, ölçeklendirmeye duyarlı ısı değiştirici tüplerle ve ısı değişiminin büyük ölçüde azaltılması ya da durdurulmasıyla olabilir. - Sıcaklıkta bir azalma genellikle bir çözeltinin akışkanlığında artış anlamına gelir. Çok yüksek bir akışkanlık hidrolik sorunlara yol açabilir ve böylece oluşturulan tabakalı akış kristalleşme dinamiklerini etkiler. - Bu durum ters çözünürlüğe sahip bileşikler için geçerli değildir, sıcaklığın düşüşü (çözünürlüğün 32,5 nin üzerinde tersine olmasına örnek sodyum sülfattır) ile çözünürlüğün artışını belirten bir terimdir.
Basit bir kristalizör soğutma iç sirkülasyon için bir mikser içeren tanklarla sağlanır, burada ısı azalması dış örtünün içinde dolaşan bir ara sıvı değişimi yoluyla elde edilir. Bu basit makineler farmasötik işlem ve ölçeklemeye yatkınlık gibi toplu işlemlerde kullanılır. Toplu işlemler normal olarak işlem boyunca ürünün göreceli değişken kalitesini sağlar.
Swenson-Walker kristalizör, Swenson Co tarafından özellikle tasarlanmış bir modeldir. 1920’lerde, içi boş bir vidalı konveyör veya bazı boş diskler içeren, bir uzunlamasına eksen üzerinde dönme esnasında soğutucu bir akışkanın devir-daim ettirildiği bir yarı silindirik yatay çukuru olan bir oluktu. Soğutucu akışkan bazen de oluk etrafında bir kılıf etrafında sirküle ettirilir. Kristaller, kazıyıcılar tarafından çıkartılır ve oluğun alt tarafına yerleştirilerek vida/disklerin soğuk yüzeylerinde çökelir. Vida, eğer varsa, bulamacı deşarj noktasına doğru iter.
Yaygın bir uygulama flaş buharlaşma ile çözeltiyi soğutmaktır: belirli bir T0 sıcaklığındaki bir sıvı bir P1 basıncı ile transfer edildiğinde, P1 deki T1 sıvı doyma sıcaklığı T0’dan düşük olacaktır, toplam buharlaşmanın gizli ısısı içsel enerji farkına eşit olacağından sıvı, sıcaklık farkı ve çözücünün miktarına göre ısı bırakacaktır. Basit bir deyişle, sıvı, bir kısmının buharlaşması ile soğutulur.
Şeker sanayisinde, kristallerde dikey soğutma, santrifüj öncesinde kristalleşmenin son aşamasında vakum kazanı aşağı çevrilerek melasın boşaltılmasında kullanılır. Lapa kristalizöre tepeden girer ve soğutma suyu ters akış borularıyla pompalanır.
Bir başka seçenek de, yaklaşık bir sabit ısıda, çözünebilirlik eşiğinin üzerinde çözünen madde konsantrasyonun artırarak kristallerin çökelmesini sağlamaktır. Bunu elde etmek için, buharlaştırma tekniği kullanılarak çözücü/çözünen kütle oranı artırılır. Elbette bu işlem sıcaklık değişimine duyarsızdır (hidrasyon durumu değişmeden kaldığı takdirde).
Kristalleşme parametrelerinin kontrolüyle ilgili tüm hususlar soğutma modelleri için aynıdır.
Birçok endüstriyel kristalizatör, dünyadaki toplam kristal üretiminin %50’den fazlasını oluşturan, çok büyük sodyum klorür ve sakaroz birimleri gibi buharlaşmalı tiptedir. En yaygın türü buharlaşmalı (FC) modeldir (bakın buharlaştırıcı). Bir pompa (bir pompa ya da eksenel akış karıştırıcı) tank boyunca homojen bir süspansiyon halinde olan kristal bulamacı tutar, değişim yüzeyleri de dâhil olmak üzere, değişim yüzeylerindeki makul hızla birlikte pompa akışını kontrol ederek, kristal kütlesinin temas süresi kontrolü ile aşırı doygun çözelti elde edilir. Oslo, yukarıda belirtildiği gibi, kabaca berrak sıvıdan ağır çamur bölgelerini ayırmak ve işlenme süresini (genellikle düşük FC’de) artırmak için büyük kristal fiksaj alanı ile donatılmış buharlaşmalı sirkülasyondan kristal rafine edilmesidir.
Herhangi bir kristal biçiminde, mümkün olan en hızlı büyüme ve kristalin özgül yüzeyi bakımından en uygun koşulları elde etme, kristal kütlesinin ve işlenme süresinin kontrolü etkili bir işlem kontrolünün sağlanması için önemlidir. Bu farklı bir yolla –basitçe söylemek gerekirse iki akışı yöneterek sıvı kütleden kristali ayırarak başarılır. Pratik bir yol, başka kusursuz bir bulamaç yoğunluğu elde etmek için kristalizör etrafında kütle akışını yönetirken, berrak (neredeyse) sıvı elde edebilmek için yerçekimi tortu çöktürmesi (ve muhtemelen ayrı geri dönüşüm) uygulamaktır. Tipik bir örnek olan DTB (Taslak tüp ve Deflektör) 1950’lerin sonunda Richard Chisum Bennett’in (Swenson mühendisi ve sonraki Swenson başkanı) bir fikridir. DTB (resme bakın) bir iç sirkülasyona, kristalizörün dışında bir halka için yerleşim yeri olan, bir taslak tüp içinde yukarı doğru iterek tipik bir eksenel karıştırıcıya (sarı) sahip, büyük kristallerin yerleşmesi için (ve ana dolaşıma iade) çok düşük hızda yukarı doğru hareket eden bir egzoz çözümü bulunan, sadece ince kısımlardan, sıcaklığı artırıp ya da azaltarak böylece ek aşırı doygunluk yaratarak belirli bir tane boyutu altında ayıklayan ve sonunda yok eden bir kristalizördür. Bütün parametrelerin hemen hemen mükemmel kontrolü sağlanır. Bu kristalizör ve türev modelleri (Krystali CSC, vb.), eğer buharlaşma kapasitesi önemli sınırlar altında değilse, buhar başının kısıtlı çapı ve nispeten düşük dış sirkülasyonun sisteme gereken çok büyük miktardaki enerjiyi arzına izin vermediğinden dolayı en son çözüm olabilir.'
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.