En İyi Sorular
Zaman Çizelgesi
Sohbet
Bakış Açıları
Euler dörtgen teoremi
Vikipedi'den, özgür ansiklopediden
Remove ads
Leonhard Euler (1707–1783) adını taşıyan Euler dörtgen teoremi veya Euler'in dörtgenler yasası, dışbükey bir dörtgenin kenarları ile köşegenleri arasındaki ilişkiyi açıklar. Pisagor teoreminin genellemesi olarak görülebilecek Paralelkenar yasasının bir genellemesidir. Bu nedenle Pisagor teoreminin dörtgenler açısından yeniden ifade edilmesi bazen Euler-Pisagor teoremi olarak adlandırılır.

Remove ads
Teorem ve özel durumlar
Özetle
Bakış açısı
Kenarları , köşegenleri ve ve iki köşegenin orta noktalarını birleştiren doğru parçası olan olan bir dışbükey dörtgen için aşağıdaki denklem geçerlidir:
Dörtgen bir paralelkenar ise, o zaman köşegenlerin orta noktaları çakışır, böylece bağlantı doğru parçası 'nin uzunluğu 0 olur. Ayrıca paralel kenarlar eşit uzunluktadır, bu nedenle Euler teoremi;
haline indirgenir ki bu da paralelkenar yasasıdır.
Dörtgen bir dikdörtgen ise denklem daha da basitleşir, çünkü artık iki köşegen de eşit uzunluktadır:
Denklemin her iki tarafını 2 ile bölüp sadeleştirmek Euler-Pisagor teoremini verir:
Başka bir deyişle, dörtgenin bir dikdörtgen olması durumunda, dörtgenin kenarları ile köşegenleri arasındaki ilişkisi Pisagor teoremi ile tanımlanır.[1]
Remove ads
Diğer formülasyon ve genişlemeler
Özetle
Bakış açısı

Paralelkenar ile Euler teoremi
Euler başlangıçta yukarıdaki teoremi, ek bir noktanın eklenmesini gerektiren ancak daha yapısal kavrayış sağlayan biraz farklı bir teoremden doğal olarak türetmiştir.
Verilen bir dışbükey dörtgeni için Euler, bir paralelkenar oluşturacak şekilde ilave bir noktası getirdi ve böylece aşağıdaki eşitlik geçerlidir:
Paralelkenarın parçası olmayan dörtgenin noktası ile ilave noktası arasındaki uzunluğu, dörtgenin paralelkenardan ne kadar saptığını ölçmek olarak düşünülebilir ve , paralelkenar yasasının orijinal denklemine eklenmesi gereken düzeltme terimidir.[2]
, 'nin orta noktası olmak üzere 'dir. , 'nin orta noktası olduğunda aynı zamanda 'nin de orta noktası olur, ve, her ikisi de paralelkenarının köşegenidir. Bu eşitliğini verir ve dolayısıyla'dir. Bu nedenle, Kesişme teoremi|nden (ve onun tersinden) şu sonuca varır: ve paraleldir ve, bu da Euler teoremini verir.[2]
Euler teoremi, çaprazlanmış ve düzlemsel olmayanları içeren daha büyük bir dörtgenler kümesine genişletilebilir. Basitçe dört rastgele noktadan oluşan genelleştirilmiş dörtgenler için geçerlidir. bir döngü çizgesi oluşturacak şekilde kenarlarla birbirine bağlanır.[3]
Remove ads
Notlar
Kaynakça
Dış bağlantılar
Konuyla ilgili yayınlar
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
