Loading AI tools
Vikipedi'den, özgür ansiklopediden
Katı hal fiziğinde, bir katının elektron kuşak yapısı (ya da sadece kuşak yapısı); katıdaki bir elektronun sahip olabileceği enerji aralıkları (enerji bandı, izinli bant ya da sadece bant olarak adlandırılır) ya da sahip olamayacağı enerji aralıkları olarak tanımlanır. Enerji bant teorisi bu bant ve bant boşluklarını atom veya moleküllerin büyük periyodik kafeslerindeki bir elektron için, izinli kuantum mekaniksel dalga fonksiyonlarını inceleyerek çıkarır. Bant teorisi katıların birçok fiziksel özelliklerini; örneğin elektriksel direnç ve optik soğurum gibi, açıklamak için başarılı bir biçimde kullanılmaktadır ve katı hal cihazları (transistörler, güneş pilleri vb.) anlamanın temelini oluşturmaktadır.
Bu madde, Vikipedi biçem el kitabına uygun değildir. (Haziran 2015) |
Tek, izole edilmiş atomun elektronları atomik orbitalleri doldurur. Her orbital ayrı enerji seviyeleri oluşturur. Birden çok atomun bir araya gelmesiyle molekül oluşur ve atomların atomik orbitalleri de birleşerek her birinin ayrı enerji seviyeleri oluşturduğu, moleküler orbitali oluşturur. Birleşen atom sayısı arttıkça, moleküler orbitaller daha da genişler ve moleküldeki enerji seviyeleri gittikçe artan bir yoğunluğa ulaşır. En sonunda atomların toplamından çok devasa bir molekül oluşur ya da başka bir deyişle, bir katı. Bu devasa molekül için enerji seviyeler birbirine o kadar yakındır ki bir bütün oluşturuyorlar gibi düşünülebilir.
Bant boşlukları temelde, enerji bantlarının sonu olan genişliklerinin bir sonucu olarak, hiçbir bant tarafından kaplanmamış artık enerji aralıklarıdır. Bantların farklı genişlikleri vardır ve bu genişlikler atomik orbitallerin örtüşme derecesine bağlıdır. İki komşu bant enerji aralığını tamamen kaplayacak genişlikte olmayabilir. Örneğin çekirdek orbitalleri(1s elektronları gibi) ile ilişkili bantlar, komşu atomların örtüşmesinin çok küçük olması sebebiyle, çok dardırlar. Sonuç olarak çekirdek bantları arasında büyük bant aralıkları olmaya eğilimi vardır. Daha çok örtüşme yapan daha geniş orbitalli büyük bantlar, yüksek enerjide gittikçe daha da genişlerler ve bant boşluğu kalmaz.
Başlangıç için teorinin daha basitleştirilmesi adına bazı önemli bilgiler verilebilir:
1. Sınırsız boyut sistemi: Bantları sürekli olabilmesi için çok büyük parça materyali dikkate almalıyız. Bant yapısı kavramı sadece indirgenmiş boyutlarda “büyük” olarak alınlarak genişletilebilir, iki boyutlu elektron sistemlerindeki gibi.
2. Homojen sistem: Yapısal özellik olarak bant yapısı kavramı, bir maddenin bir şekilde homojen olduğu varsayar. Pratikte bunun anlamı, bant yapısının düzenli yapıdaki bir maddenin içindeki bir kitle olmasıdır.
3. Etkileşimsizlik: Bant yapısı “tek-elektron hali”ni tarif eder. Bu hallerin varlığı elektronların diğer elektronlar, fotonlar ve örgü titreşimleri ile dinamik bir etkileşime geçmeden, statik potansiyelde yolculuk yaptığını kabul eder.
Yukarıdaki varsayımlar birçok önemli pratiksel durumlarla çürütülmüştür. Bant yapısının kullanımını anlamak için bant teorisinin limitlerine de bakılmalıdır:
Bant yapısı hesaplamaları, kristal örgüsünün simetrisini kullanarak, periyodik doğasından yararlanır.
“k” dalga vektörü olarak adlandırılır. k’nın her değeri için, Schrödinger denkleminin n, the band index ile gösterilen birden çok çözümü vardır ve n değeri basitçe enerji bantlarını gösterir. k değiştikçe her bir enerji seviyesi yavaşça değişir ve a smooth band of states oluşturur. Her bant için o banttaki elektronların dağılma ilişkisini En(k) fonksiyonu ile tanımlayabiliriz.
Dalga vektörü Brillouin alanının, kristalin kafesiyle alakalı çokyüzlü dalga vektörü boşluğu, içindeki herhangi bir değeri alabilir. Brillouin alanının dışında kalanlar, basitçe bu alanın içinde bulunan hallerle fiziksel olarak aynıdır. Brillouin alanındaki özel yüksek simetri noktaları Γ, Δ, Λ, Σ sembolleriyle gösterilir.
Bant’ın şeklini dalga vektörü fonksiyonu olarak gözde canlandırmak zordur çünkü 4 boyutlu uzay, E ‘ye kx, ky, kz, olarak çizmek gerekir. Bilimsel yayınlarda genelde bant yapısı grafikleri En(k) ve k değerlerini birleştiren simetri noktalarından oluşan bir çizgi olarak gösterilir. Bant yapısını görselleştirmek için diğer bir metot ise dalga vektörü uzayında sabit enerjili izoyüzey olarak koyarak, enerji belli bir değerdeyken tüm halleri gösteren bir grafik çizmektir. Hallerin izoyüzeyi Fermi seviyesindeki enerjiye eşittir ve bu izoyüzey Fermi yüzeyi olarak adlandırılır.
Enerji bant aralıkları, onları çevreleyen hallerin dalga vektörleri kullanılarak sınıflandırılır:
Genelde elektronik bant yapıları kristal yapıdaki maddelerle özdeşleştirilse de, yarı kristal ve amorf katılar da bant yapısı gösterebilir. Fakat bu yapılarda kristalin basit simetri yapısı eksik olduğundan ve genelde kesin bir dağılma ilişkisine karar vermek mümkün olmadığı için, teorik olarak çalışmak daha zordur. Sonuç olarak katıların bant yapısı ile ilgili var olan teorik çalışmaların hemen hemen hepsi kristal maddeler üzerine yoğunlaşır.
Hal yoğunluğu fonksiyonu g(E) birim hacme, birim enerjiye, E civarındaki elektron enerjileri için, düşen elektronik hal sayısı olarak tanımlanır.
Hal yoğunluğu fonksiyonu bant teorisine dayalı hesaplamalar için önemlidir. Bu fonksiyon optik soğurum hesaplamaları için hem uyarılabilir elektron sayısını hem de bir elektron için son hal sayısını sağlar. Aynı zamanda elektriksel iletkenlik hesaplamalarında mobile state sayısını ve elektron saçılma hızlarını hesaplarken saçılmadan sonraki son hal sayılarını verir. Bant boşluğu içindeki enerjiler için, g(E) = 0.
Termodinamik dengede E enerji halinin bir elektronla dolma olasılığı Fermi-Dirac dağılımı(Pauli dışlanım ilkesini hesaba alan bir termodinamik dağılım) ile verilir:
Formüldeki bileşenler :
Bir katının Fermi seviyesi o katıya uygulanan ve voltmetreyle ölçülen gerilimle doğrudan ilişkilidir. Genellikle bant yapısı grafiklerinde Fermi seviyesi sıfır alınır (isteğe bağlı/rastgele seçilmiş bir değer).
Maddedeki elektronların yoğunluğu Fermi-Dirac dağılımının hallerin yoğunluğuyla çarpımının integralidir:
Sonsuz sayıda bant olmasına ve böylece sonsuz sayıda hal olmasına rağmen, sadece sınırlı sayıda elektron bu bantlara yerleşir. Tercih edilen elektron sayısı elektrostatiğin bir sonucudur: maddenin yüzeyinin yükle yüklenebilmesine rağmen maddenin içindeki kitle nötr yükü tercih eder. Yükün nötr olma durumu N/V değerinin maddedeki proton yoğunluğuyla aynı olmasıdır. Bunun olması için maddenin elektrostatik olarak kendini ayarlaması, Fermi seviyesine göre doğru denge olana kadar bant yapısını enerji içinde aşağı ya da yukarı kaydırması (dolayısıyla g(E)yi kaydırması) gerekir.
Bir katıda, atomların sonsuz enerji seviyesi olması gibi, sonsuz sayıda izinli bant vardır. Ancak, bantların çoğunun çok yüksek enerjisi vardır ve genelde sıradan durumlarda dikkate alınmazlar. Tam aksine çekirdek orbitalleri ile ilişkilendirilen (1s elektronları gibi) çok düşük enerji bantları vardır. Bu düşük enerjili çekirdek bantları da her zaman elektronla dolu oldukları ve bu yüzden etkisiz oldukları için genelde dikkate alınmazlar.
En önemli bant ve bant aralıkları—elektronik ve optoelektronikle ilgili olanlar—Fermi seviyesi yakınında olanlardır. Bu bant ve bant aralıklarına maddeye bağlı olarak özel isimler verilmiştir:
“Ansatz” periyodik kristal örgüdeki elektron dalgalarını, Bloch dalgalarını genellikle ışığın kırılmasının dinamik teorisi ile işlenerek kullanılmasıyla çözüldüğü bir özel durumdur. Her kristal, Bravais örgüsü ile karakterize edilebilen periyodik bir yapıdır ve her Bravais örgüsü için üç ters örgü vektörü (b1,b2,b3) içeren bir set ile periyodikliği kapsayan bir ters örgüye karar verilebilir. Şimdi, doğrudan örgü ile aynı periyodikliği paylaşan herhangi bir periyodik potansiyel V(r), sadece sıfır olmayan bileşenlerinin ters örgü vektörleri ile ilişkilendirildiği Fourier serisine genişletilebilir:
K = m1b1 + m2b2 + m3b3 herhangi tam sayıdan oluşan (m1,m2,m3) seti için.
Bu teoriden yola çıkılarak belirli bir maddenin bant yapısını tahmin etmeye yönelik girişim yapılabilir, ancak elektronik yapı hesaplamaları için başlangıçtan beri olan çoğu metotlar, gözlenmiş bant boşuluğunu tahmin etmede başarısızdır.
Bu yaklaşımda elektronlar arası etkileşimler tamamen yok sayılmıştır. Aynı zamanda bu yaklaşımda Bloch teoremi kullanılmasına izin verilmiştir. Bu da periyodik potansiyelde olan elektronların dalga fonksiyonları ve dalga fonksiyonlarında komşu ters örgü vektörleri arasında sabit faz değişimine kadar periyodik olan enerjileri olduğunu gösterir. Periyodikliğin sonuçları matematiksel olarak aşağıdaki Bloch dalga fonksiyonunda gösterilmiştir:
kristal ögü üstünde periyodiktir, yani,
Burada n göstergesi n’inci enerji bandını gösterirken, k dalga fonksiyonu elektronun hareket yönüyle, r kristaldeki pozisyon, R ise atom yeri ile alakalıdır.
Bu model metaller gibi komşu atomları küçük olan maddelerde çok daha iyi işler. Bu tip maddelerde atomik orbitallerin örtüşmesi ve komşu atomlardaki potansiyel göreceli olarak büyüktür. Bu durumda elektronun dalga fonksiyonuna (modifiye edilmiş) düzlemsel dalga ile yaklaşılabilir. Aluminyum gibi metallerin bant yapısı boş örgü yaklaşımına daha yakındır.
Kısmen serbest elektron yaklaşımına tamamen ters olarak, kristaldeki elektronların bileşen atomların toplanması gibi davranmasıdır. Bu sıkı bağlanma modeli zamana bağlı tek elekton Schrödinger dekleminin,çözümüne atomik orbitallerin [5] lineer kombinasyonu ile yaklaşılabileceğini varsayar.
katsayıları çözüme en iyi yaklaşımı vermek için seçilmiştir. n atomik enerji seviyesini ve R atom yeri’ni ifade eder. Daha doğru bir yaklaşım, bu fikrin Wannier fonksiyonuna uygulanmasıyla yapılır:
Bloch dalgasının periyodik kısmı ve integral Brillouin alanı üzerindedir. Burada n kristaldeki n’inci enerji bantını gösterir. Wannier fonksiyonları atomik orbitallerdeki gibi, atom yerinin yanında yer alır, fakat Bloch fonksiyonlarıyla tanımlandığında kristal potansiyele dayalı çözümlerle daha kesin ilişkilendirilirler. Farklı atom yerlerindeki R Wannier fonksiyonları ortogonaldir. Wannier fonksiyonları n’inci enerji seviyesi için Schrödinger çözümü oluşturmada kullanılabilir:
Bu model atomik orbitallerle kaomşu aromlar arasında sınırlı örtüşme olan maddelerde iyi işler. Örneğin Si, GaAs, SiO2 ve elmas gibi maddelerdeki bant yapıları sp3 orbitallerine dayandırılan sıkı bağlanma Hamiltonian’ı ile çok iyi bir biçimde tanımlanabilir. Geçiş metallerinde karışık Sıkı Bağlanma(SB)- Kısmen Serbest Elektron(KSE) modelleri daha geniş KSE iletim bantları ve daha dar gömülü SB d-bantlarını tamınlamada kullanılır. Wannier fonksiyonlarının atomik orbital kısmının radyal fonksiyonları psödopotansiyel metotlarla kolayca hesaplanır. KSE, SB veya birleşimi KSE-SB bant yapıları hesaplamaları ve bazen psödopotansiyel metotlara dayalı dalga fonksiyonlarına genişletilmiş halleri, sıklıkla daha ileri hesaplamaların ekonomik başlangıç noktası olarak kullanılır.
Bu yaklaşımın en basit formu örtüşmeyen kürelerin atomik pozisyonda toplanmasıdır (kek kalıbı olarak anılır). Bu bölgelerin içinde bir elektron tarafından deneyimlenen potansiyel, çekirdeğe göre küresel simetriye yakındır. Kalan ara bölgedeki görülen potansiyel yaklaşık olarak sabittir. Potansiyelin atom-merkezli küre ve ara bölge arasında sürekli olmasına zorlanır.
Korringa, Kohn ve Rostocker tarafından değişken uygulamalar önerilmiştir ve sıklıkla bunşar KKR model olarak adlandırılır.
En son fizik literatüründe, elektronik yapıların ve bant grafiklerinin büyük çoğunluğu yoğunluk-fonksiyonel teorisi (YFT)-model değil teori olarak adlandırılır- kullanılarak hesaplanır. YFT-hesaplamalı bantlar birçok durumda deneysel olarak ölçülmüş, örneğin açı-çözümlenmeli ışılyayım spektroskopisi(ARPES) ile, bantlarla uygunluk sağlar. Özellikle bantın şekli YFT ile genel olarak çok iyi üretilir. Ama aynı zamanda YFT bantlarında deney sonuçlarıyla karşılaştırıldığında sistematik hatalar vardır. YFT özellikle yalıtkan ve yarı iletkenlerdeki bant boşluklarını yaklaşık 30-40% kadar daha az tahmin eder.
Genel olarak YFT’nin sadece temel hal özelliklerini (örn. toplam enerji, atomik yapı vb.) tahmin eden bir teori olduğuna ve uyarılmış hal özelliklerine bu teori belirlenemeyeceğine inanılır. Bu bir kavram yanılgısıdır. Bu Hohenburg-Kohn teoreminin temelidir. Ancak pratikte bir maddedeki temel halde uyarılmış hale geçen elektronların enerjilerini haritalayan bilinen bir işlevsel yoktur. Böylece, literatürde YFT bant grafiği olarak geçen aslında YFT Kohn-Sham enerjilerinin temsilidir (yani; hiç fiziksel yorumlaması olmayan, hayali etkileşimsiz bir sistemin enerjileri, Kohn-Sham sistemi). Kohn-Sham elektronik yapısı gerçekle, bir sistemin yalancı parçacıklı elektronik yapısı ile karıştırılmamalıdır.
Dolayısıyla, prensipte, YFT’ye dayalı Kohn-Sham bir bant teorisi değildir, yani bant grafikleri ve bantların hesaplanması için uygun bir teori değildir. Pratikte genelde zor olsa da, temelde zamana bağlı YFT gerçek bant yapısını hesaplamada kullanılabilir. Ünlü bir yaklaşım ise Hartree-Fock exact exchange’in bir kısmını içeren hibrit fonksiyonlarının kullanılmasıdır; bu, yarıiletkenlerde tahmin edilen bant boşluklarının önemli ölçüde gelişmesidir, fakat metallerde ve bant aralığı geniş maddelerde daha az güvenilir sonuçlar verir.
Elektron- elektron etkileşimi çok kütleli etkisini içeren bantları hesaplamak için Green’in fonksiyon metodu denilen yola başvurulabilir. Hatta bir sistemin Green fonksiyonunu bilmek, sistemin hem temel (toplam enerji) hem de uyarılmış halinin gözlenebilmesini sağlar. Green foksiyonunun kutupları, katıların bantı, yalancı parçacık enerjileridir. Green fonksiyonu, sistemin kendi enerjisi biliniyorsa Dyson denklemini çözerek hesaplanabilir. Katılar gibi gerçek sistemler için, kendi enerjileri çok kompleks bir miktardır ve genellikle problemi çözmek için varsayımlara ihtiyaç vardır. Bu varsayımlardan biri GW yaklaşımıdır, öz enerjiyi Σ = GW matematiksel formunda alır; G Green fonksiyonu, W ise dinamik olarak gösterilen etkileşimdir. Bu yaklaşım bant grafikleri hesaplamasını (ve ayrıca spektral fonksiyonlar gibi ötesinde miktarlar) ele aldığında daha geçeri hale gelir ve aynı zamanda ab inito yolu ile tamamen formülize edilebilir. GW yaklaşımı yalıtkanların ve yarı iletkenlerin bant boşluklarını deneylerle uygun olarak sağlar ve böylece sistematik YFT yetersiz tahminini düzeltir.
Kısmen serbest elektron yaklaşımı elektron bant yapısının çoğu özelliğini tanımlayabilse de, bu teorinin bir sonucu, her birim hücre için aynı sayıda elektron sayısını tahmin etmesidir. Eğer elektron sayıları tek ise, her birim hücrede bir çiftleşmemiş elektron bulunmasını bekleriz ve böylece değerlik bandı tam olarak dolmamış olur ve maddeyi iletken yapar. Ancak CoO gibi maddeler, bu sonuca doğrudan zıt olarak, birim hücrelerinde tek sayıda elektron olmasına rağmen yalıtkandır. Bu tip maddeler Mott yalıtkanı olarak bilinir ve bu çelişkiyi açıklamak için ek olarak elektron-elektron etkileşimlerinin de detaylandırılması gerekir. Hubbard modeli bu etkileşimleri dahil eden ortalama bir teoremdir.
Bant yapılarını hesaplamak teorik katı hal fiziğinin önemli bir konusudur. Yukarıda bahsedilen modellere ek olarak diğer modeller şunları içerir:
Bant yapısı kompleks sayılar olan dalga fonksiyonlarına genellenmiştir ve bunun sonucunda yüzey ve arayüzleri ile ilgili olan, kompleks bant yapıları olarak adlandırılırlar.
Her model bazı tip katıları çok iyi, bazılarını ise çok zayıf bir biçimde tanımlar. Kısmen serbest elektron modeli metaller için iyiyken, ametaller için yetersiz kalır. Sıkı bağlanma modeli iyonik yalıtkanlar,metal halojenürler gibi (örn.NaCl) için oldukça kesin sonuç verir.
Gerçek uzayda bant yapılarının Fermi seviyesine göre nasıl değiştiğini anlamak için, genel olarak bant grafiği çizilir. Bu grafikte dikey eksen enerjiyi, yatay eksen ise gerçek uzayı temsil eder. Yatay çizgiler enerji seviyelerini, bloklarsa enerji bantlarını gösterir. Yatay çizgiler eğimli ise, seviyenin veya bandın enerjisi uzaklıkla değişir. Grafiksel olarak, bu durum kristal sistemde bir elektrik alanın bulunduğunu gösterir. Bant grafikleri, birbirileriyle temas halindeyken farklı maddelerin birbirine karşı genel bant yapısı özelliklerini anlamada kullanışlıdır.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.