Loading AI tools
Fransız matematikçi (1869 – 1951) Vikipedi'den, özgür ansiklopediden
Élie Joseph Cartan, ForMemRS (Fransızca telaffuz: [kaʁtɑ̃]; 9 Nisan 1869 - 6 Mayıs 1951) Lie grupları, diferansiyel sistemler (PDE'lerin koordinatsız geometrik formülasyonu) ve diferansiyel geometri teorisinde temel çalışmalar yapan etkili bir Fransız matematikçi. Ayrıca genel göreliliğe ve dolaylı olarak kuantum mekaniğine önemli katkılarda bulundu.[3][4][5] Yirminci yüzyılın en büyük matematikçilerinden biri olarak kabul edilmektedir.[5]
Élie Cartan | |
---|---|
Doğum | 09 Nisan 1869 Dolomieu, Isère, Fransa |
Ölüm | 06 Mayıs 1951 (82 yaşında) Paris, Fransa |
Defin yeri | Dolomieu'da bir Mezarlık[1][2] 45°36′42.84″K 5°29′52.40″D |
Milliyet | Fransız |
Eğitim | École normale supérieure Lycée Janson-de-Sailly Science Faculty of Paris Paris Üniversitesi |
Mezun olduğu okul(lar) | Paris Üniversitesi |
Tanınma nedeni |
|
Memleket | Fransa |
Evlilik | Marie-Louise Bianconi |
Çocuk(lar) | Henri Cartan, Jean Cartan, Hélène Cartan, Louis Cartan |
Ödüller |
|
Kariyeri | |
Dalı | Matematik, Fizik, Diferansiyel geometri, Genel görelilik |
Çalıştığı kurum | Science Faculty of Paris (1909-1940) Montpellier Üniversitesi (1894-1896) Lyon Üniversitesi (1896-1969) (1896-1903) Nancy-Université (1903-1909) Paris Üniversitesi Lyon Üniversitesi |
Tez | Sur la structure des groupes de transformations finis et continus (1894) |
Doktora danışmanı | Jean Gaston Darboux Sophus Lie |
Doktora öğrencileri | Charles Ehresmann Kentaro Yano Germán Ancochea Quevedo Radu Roșca Georges de Rham Radu Rosca Mohsen Hashtroodi Michel-Louis Guérard des Lauriers Assadollah Alebouyeh Father Charles Racine |
Oğlu Henri Cartan, cebirsel topolojide çalışan etkili bir matematikçidir.
Élie Cartan, 9 Nisan 1869'da Dolomieu, Isère köyünde Joseph Cartan (1837-1917) ve Anne Cottaz'ın (1841-1927) oğlu olarak doğdu. Joseph Cartan köyün demircisiydi; Élie Cartan, çocukluğunun "her sabah şafaktan başlayan örs darbeleri" altında geçtiğini ve "annesinin, çocuklara ve evine bakmaktan azade olduğu o ender dakikalarda annesinin bir bir çıkrık ile birlikte çalıştığını hatırladı." Élie'nin terzi olan bir ablası Jeanne-Marie (1867-1931), babasının demirhanesinde çalışan bir demirci olan küçük erkek kardeş Léon (1872-1956) ve kısmen Élie'nin etkisi altında olan ve Élie'nin daha önce yaptığı gibi École Normale Supérieure'ye girerek kariyerini lycée'de (ortaokul) matematik öğretmeni olarak seçen küçük bir kız kardeşi Anna Cartan (1878-1923) vardı.
Élie Cartan, Dolomieu'de bir ilkokula girdi ve okuldaki en iyi öğrenciydi. Öğretmenlerinden biri olan M. Dupuis, "Élie Cartan utangaç bir öğrenciydi, ancak gözlerinde büyük bir zekanın alışılmadık bir ışığı parlıyordu ve bu mükemmel bir anıyla birleştirildi" diye hatırladı. Isère vekili Antonin Dubost, okulu ziyaret ederek Cartan'ın sıra dışı yeteneklerinden etkilenmiştir. Cartan'a bir lycée burslu yarışmaya katılmasını tavsiye etti. Cartan, M. Dupuis gözetiminde yarışmaya hazırlandı ve on yaşında yarışmayı geçti. Vienne Koleji'nde beş yıl (1880-1885) ve ardından Grenoble Lisesi'nde iki yıl (1885-1887) geçirdi. 1887'de iki yıl bilim okumak için Paris'teki Lycée Janson de Sailly'ye taşındı; orada daha sonra Fransa'da ünlü bir fizikçi olan sınıf arkadaşı Jean-Baptiste Perrin (1870-1942) ile tanıştı ve arkadaş oldu.
Cartan, 1888'de École Normale Supérieure'ye kaydoldu. Orada Charles Hermite (1822-1901)'in, Jules Tannery (1848-1910)'nin, Gaston Darboux (1842-1917)'nun, Paul Appell (1855-1930)'in, Emile Picard (1856-1941)'ın, Edouard Goursat'ın (1858-1936) ve dersleri Cartan'ın en çok düşündüğü şey olan Henri Poincaré (1854-1912)'in konferanslarına katıldı.
1891'de École Normale Superieure'den mezun olduktan sonra, Cartan bir yıl görev yaptığı ve çavuş rütbesini kazandığı Fransız ordusuna alındı. Sonraki iki yıl boyunca (1892-1894) Cartan ENS'ye geri döndü ve 1888-1889 yılları arasında Sophus Lie'nin öğrencisi olan sınıf arkadaşı Arthur Tresse'nin (1868-1958) tavsiyesini dinledi ve Wilhelm Killing tarafından başlatılan basit Lie gruplarının sınıflandırılması konusunda çalıştı. 1892'de Lie, Darboux ve Tannery'nin daveti üzerine Paris'e geldi ve Cartan ile ilk kez tanıştı.
Cartan, 1894'te Sorbonne'daki Bilimler Fakültesi'nde Sonlu sürekli dönüşüm gruplarının yapısı (The structure of finite continuous groups of transformations) adlı tezini savundu. 1894 ile 1896 arasında Cartan, Montpellier Üniversitesi'nde öğretim görevlisiydi; 1896'dan 1903'e kadar Lyon Üniversitesi Fen Fakültesi'nde öğretim görevlisi olarak çalıştı.
1903'te Lyons'tayken Cartan, Marie-Louise Bianconi (1880-1950) ile evlendi; aynı yıl, Cartan Nancy Üniversitesi Fen Fakültesi'nde profesör oldu. 1904'te Cartan'ın daha sonra etkili bir matematikçi olan ilk oğlu Henri Cartan doğdu; 1906'da besteci olan Jean Cartan adlı başka bir oğlu doğdu. 1909'da Cartan ailesini Paris'e taşıdı ve Sorbonne'daki Fen Fakültesi'nde öğretim görevlisi olarak çalıştı. 1912'de Cartan, Poincaré'den aldığı referansa dayanarak orada Profesör oldu. 1940'ta emekli olana kadar Sorbonne'da kaldı ve hayatının son yıllarını École Normale Supérieure'de kızlar için matematik öğreterek geçirdi.
Cartan'ın bir öğrencisi olan geometri uzmanı Shiing-Shen Chern şunları yazdı:[6]
“ | Genellikle [Cartan ile görüşmeden] sonraki gün ondan bir mektup alırdım. "Sen gittikten sonra, soruların hakkında daha çok düşündüm ..." derdi - bazı sonuçları, bazı soruları ve benzeri şeyler vardı. Basit Lie grupları, Lie cebirleri hakkındaki tüm bu makaleleri ezbere biliyordu. Onu sokakta gördüğünüzde, belli bir konu ortaya çıktığında, eski bir zarfı çıkarır, bir şeyler yazar ve size cevabı verirdi. Ve bazen aynı cevabı almam saatler hatta günlerimi aldı. . . Çok çalışmam gerekiyordu. | „ |
1921'de Polonya Öğrenim Akademisi'nin yabancı üyesi ve 1937'de Hollanda Kraliyet Sanat ve Bilim Akademisi'nin yabancı üyesi oldu.[7] 1938'de Uluslararası Bilim Birliği Kongrelerini düzenlemek için oluşturulan Uluslararası Komite'ye katıldı.[8]
Uzun bir hastalıktan sonra 1951'de Paris'te öldü.
1976'da daha önce Apollonius D olarak belirtilen bir ay krateri onun adını aldı.
Cartan, Travaux’da çalışmalarını 15 alana ayırır. Modern terminolojiyi kullanarak bunlar:
Cartan'ın matematiksel çalışması, günümüzde pek çok kişinin modern matematiğin merkezi ve en hayati parçası olduğunu düşündüğü ve en başta şekillendirme ve ilerlemede olduğu, farklılaştırılabilir manifoldlar üzerinde analizin gelişimi olarak tanımlanabilir. Bu alan Lie grupları, kısmi diferansiyel sistemler ve diferansiyel geometri üzerine odaklanır; bunlar, esas olarak Cartan'ın katkılarıyla, şimdi yakinen iç içe geçmiş, birleşik ve güçlü bir araç oluşturuyor.
Cartan, tezinden sonraki otuz yıl boyunca Lie grupları alanında neredeyse yalnızdı. Lie, bu grupları esasen, analitik olarak sonlu sayıda parametreye dayanan bir analitik manifoldun analitik dönüşüm sistemleri olarak değerlendirmişti. Bu grupların araştırılmasına çok verimli bir yaklaşım, 1888'de Wilhelm Killing'in diğer manifoldlar üzerindeki olası eylemlerinden bağımsız olarak grubu kendi içinde sistematik olarak incelemeye başladığında filizlendi. O zamanlar (ve 1920'ye kadar) yalnızca yerel özellikler dikkate alındı, bu nedenle Killing için çalışmanın ana amacı, yerel özellikleri tamamen cebirsel terimlerle tam olarak yansıtan grubun Lie cebiriydi. Killing'in en büyük başarısı, tüm basit karmaşık Lie cebirlerinin belirlenmesiydi; ispatları genellikle kusurluydu ve Cartan'ın tezi, esas olarak yerel teoriye sağlam bir temel atmaya ve Killing'in gösterdiği basit karmaşık Lie cebirlerinin her birine ait istisnai Lie cebirlerinin varlığının mümkün olduğunu kanıtlamaya adanmıştı. Daha sonra Cartan, tamamen yeni yöntemler geliştirmesi gereken iki temel problemi açıkça çözerek yerel teoriyi tamamladı: basit gerçek Lie cebirlerinin sınıflandırılması ve basit Lie cebirlerinin tüm indirgenemez doğrusal gösterimlerinin, bu amaçla ortaya koyduğu bir ağırlık gösterim kavramı aracılığıyla belirlenmesi. 1913'te Cartan'ın daha sonra kuantum mekaniğinde bu kadar önemli bir rol oynayan spinörleri keşfettiği, ortogonal grupların doğrusal temsillerini belirleme sürecindeydi.
1925'ten sonra Cartan, topolojik sorularla gittikçe daha fazla ilgilenmeye başladı. Weyl'in kompakt gruplar üzerindeki parlak sonuçlarından etkilenerek Lie gruplarının global özelliklerinin incelenmesi için yeni yöntemler geliştirdi; özellikle, topolojik olarak bağlantılı bir Lie grubunun, bir Öklid uzayının ve kompakt bir grubun çarpımı olduğunu gösterdi ve kompakt Lie grupları için, alttaki manifoldun olası temel gruplarının, grubun Lie cebirinin yapısından okunabileceğini keşfetti. Son olarak, kompakt Lie gruplarının Betti sayılarını belirleme yönteminin ana hatlarını çizdi ve problemi yine kendi Lie cebirleri üzerindeki cebirsel bir soruya indirgedi ve o zamandan beri tamamen çözüldü.
Cartan'ın (Lie'den sonra) "sonlu sürekli gruplar" (veya "sonlu dönüşüm grupları") olarak adlandırdığı Lie gruplarının yapısı problemini çözdükten sonra, Cartan, şimdi Lie sözde grupları olarak adlandırılan "sonsuz sürekli gruplar" için benzer problemi ortaya koydu. Lie gruplarının sonsuz boyutlu bir analogu (Lie gruplarının başka sonsuz genellemeleri vardır. Cartan tarafından ele alınan Lie sözde grubu, aynı dönüşümü içeren ve bu kümedeki iki dönüşümün bileşiminin sonucunun (mümkün olduğunda) aynı kümeye ait olduğu özelliğine sahip bir uzayın alt kümeleri arasındaki bir dizi dönüşümdür. İki dönüşümün bileşimi her zaman mümkün olmadığından, dönüşümler kümesi bir grup değil (modern terminolojide bir groupoid), dolayısıyla adı sözde gruptur. Cartan, yalnızca söz konusu dönüşümler tarafından aktarılmış sınıflara manifoldların alt bölümü olmayan manifold dönüşümlerini dikkate aldı. Bu tür sözde dönüşüm gruplarına ilkel denir. Cartan, karmaşık analitik dönüşümlerin her sonsuz boyutlu ilkel sözde grubunun altı sınıftan birine ait olduğunu gösterdi:
Gerçek değişkenlerin analitik fonksiyonlarıyla tanımlanan ilkel sözde gerçek dönüşüm grupları için benzer sözde grup sınıfları vardır.
Cartan'ın diferansiyel sistemler teorisindeki yöntemleri belki de en derin başarısıdır. Geleneği bozarak, en başından problemleri, belirli değişkenler ve bilinmeyen fonksiyonlardan bağımsız olarak, tamamen değişmez bir şekilde formüle etmeye ve çözmeye çalıştı. Böylelikle ilk kez keyfi bir diferansiyel sistemin "genel" çözümünün tam bir tanımını verebildi. Bir sonraki adımı, verilen sisteme yeni bilinmeyenleri ve yeni denklemleri birleştirmeyi içeren bir "uzatma" yöntemiyle tüm "tekil" çözümleri de, orijinal sistemin herhangi bir tekil çözümü, yeni sistemin genel bir çözümü haline gelecek şekilde belirlemeye çalışmaktı. Cartan, yöntemini işlediği her örnekte tüm tekil çözümlerin tam olarak belirlenmesine yol açtığını göstermesine rağmen, genel olarak bunun keyfi bir sistem için her zaman geçerli olacağını kanıtlamayı başaramadı; böyle bir kanıt 1955'te Masatake Kuranishi tarafından elde edildi.
Cartan'ın başlıca aracı, tezini izleyen on yıl içinde yaratılmasına ve geliştirilmesine yardım ettiği dış diferansiyel formlar hesabıydı ve sonra olağanüstü bir ustalıkla diferansiyel geometri, Lie grupları, analitik dinamikler ve genel görelilikteki en çeşitli problemlere uygulamaya başladı. Sadece onun olağanüstü cebirsel ve geometrik kavrayışı ile mümkün olan son derece eliptik bir tarzda ele alarak çok sayıda örneği tartıştı.
Cartan'ın diferansiyel geometriye katkıları daha az etkileyici değildir ve Riemann ile Darboux'un ilk çalışmaları kasvetli hesaplamalar ve küçük sonuçlarda kaybolduğu için tüm konuyu yeniden canlandırdığı söylenebilir, tıpkı bir nesil önce temel geometri ve değişmez teoride olduğu gibi. Onun yol gösterici ilkesi, Darboux ve Ribaucour'un klasik diferansiyel geometride yapılan her şeyin çok ötesinde, muazzam bir esneklik ve güç verdiği "hareketli çerçeveler" yönteminin önemli bir uzantısıydı. Modern terimlerle, yöntem, aynı tabana sahip olan ve tabanın her noktasında aynı noktada lif demeti (fiber bundle) E üzerinde etkili olan gruba eşit bir life sahip olan ana lif demetinin bir lif demeti E ile ilişkilendirilmesinden oluşur. E, tabanın üzerindeki teğet demetiyse (Lie, esasen "temas elemanlarının" manifoldu olarak bilindiğinden), karşılık gelen grup genel doğrusal gruptur (veya klasik Öklid veya Riemann geometrisinde dik [ortogonal] gruptur). Cartan'ın diğer birçok türdeki lifi ve grubu işleyebilme yeteneği, bir kişinin ona bir lif demeti hakkındaki ilk genel fikrini vermesini sağlar, ancak bunu açıkça tanımlamamıştır. Bu kavram, modern matematiğin tüm alanlarında, özellikle küresel diferansiyel geometri ve cebirsel ve diferansiyel topolojide en önemli konulardan biri haline geldi. Cartan, şimdi evrensel olarak kullanılan ve 1917'den sonra, Riemann modelinden daha genel ve belki de evrenin genel görelilik çizgisinde bir tanıma daha iyi uyarlanmış bir "geometri" türü bulmak için birkaç geometrinin önceki girişimlerinin yerini alan bağlantı tanımını formüle etmek için kullandı.
Cartan, Riemann geometrisinin çok daha zarif ve basit bir sunumunu elde etmek için bağlantı kavramını nasıl kullanacağını gösterdi. Bununla birlikte, ikinci en önemli katkısı, simetrik Riemann uzaylarının keşfi ve çalışılmasıydı; matematiksel bir kuramın başlatıcısının aynı zamanda onu tamamlayan kişi olduğu birkaç örnekten biridir. Simetrik Riemann uzayları çeşitli şekillerde tanımlanabilir; en basiti, kapsayıcı olan, noktayı sabit bırakan ve mesafeleri koruyan bir "simetri" nin uzayın her noktası etrafındaki varoluşu varsayar. Cartan'ın keşfettiği beklenmedik gerçek, basit Lie gruplarının sınıflandırılmasıyla bu alanların tam bir tanımını vermenin mümkün olmasıdır; Bu nedenle, otomorfik fonksiyonlar ve analitik sayı teorisi (görünüşte diferansiyel geometriden çok uzak) gibi matematiğin çeşitli alanlarında, bu alanların giderek daha önemli hale gelen bir rol oynaması şaşırtıcı olmamalıdır.
Cartan rakip bir yerçekimi teorisi yarattı, ayrıca Einstein-Cartan teorisi.
Cartan'ın makaleleri 6 cilt olan Oeuvres complètes'inde toplandı. (Paris, 1952-1955). İki mükemmel ölüm ilanı bildirisi S. S. Chern ve C. Chevalley, Bulletin of the American Mathematical Society, 58 (1952); ve J. H. C. Whitehead, Kraliyet Cemiyeti'nin Ölüm Bildirileri (1952)'ndedir.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.