Loading AI tools
จากวิกิพีเดีย สารานุกรมเสรี
โซลิดสเตตไดรฟ์ (อังกฤษ: Solid state drive, SSD) หรือ เอสเอสดี คือ อุปกรณ์จัดเก็บข้อมูลชนิดหนึ่ง ซึ่งใช้ชิปวงจรรวมที่ประกอบรวมเป็น หน่วยความจำ เพื่อจัดเก็บข้อมูลแบบถาวรเหมือนฮาร์ดดิสก์ เทคโนโลยีของโซลิดสเตตไดรฟ์ถูกสร้างมาเพื่อทดแทนฮาร์ดดิสก์จึงทำให้มีอินเทอร์เฟส อินพุต/เอ้าพุต เหมือนกันและสามารถใช้งานแทนกันได้ และเนื่องจากโซลิดสเตตไดรฟ์ถูกสร้างด้วยวงจรอิเล็กทรอนิกส์จึงไม่มีชิ้นส่วนจักรกลใดๆที่มีการเคลื่อนที่ (หลักการของ ฮาร์ดดิสก์ และ ฟรอปปี้ดิสก์ คือใช้จานแม่เหล็กหมุน) ส่งผลให้ความเสียหายจากแรงกระแทกของโซลิดสเตตไดรฟ์นั้นน้อยกว่าฮาร์ดดิสก์ (หรือทนต่อการแรงสั่นสะเทือนได้ดี) โดยการเปรียบเทียบจากการที่โซลิดสเตตไดรฟ์ไม่ต้องหมุนจานแม่เหล็กในการอ่านข้อมูลทำให้อุปกรณ์กินไฟน้อยกว่า และใช้เวลาในการเข้าถึงข้อมูล (access time) และเวลาในการหน่วงข้อมูล (latency) น้อยกว่าเนื่องจากสามารถเข้าถึงข้อมูลในตำแหน่งต่างๆ ได้รวดเร็วและทันทีโดยไม่ต้องรอการหมุนจานแม่เหล็กให้ถึงตำแหน่งของข้อมูล
บทความนี้ไม่มีการอ้างอิงจากแหล่งที่มาใด |
คำว่าโซลิดสเตตไดรฟ์เป็นคำกว้างๆ ที่อธิบายถึงอุปกรณ์เก็บข้อมูลลักษณะเดียวกับฮาร์ดดิสก์แต่ใช้หน่วยความจำในการเก็บข้อมูลทดแทนการใช้จานแม่เหล็ก โซลิดสเตตไดรฟ์จึงมีหลายชนิดซึ่งแตกต่างกันตามชนิดหน่วยความจำที่ใช้ในการเก็บข้อมูล ปัจจุบันหน่วยความจำที่นิยมนำมาใช้ในโซลิดสเตตไดรฟ์คือ หน่วยความจำแฟลช ซึ่งพบเห็นได้ทั่วไปและเป็นที่นิยมที่สุดแต่มีข้อเสียที่จำกัดจำนวนครั้งในการเขียนข้อมูลทับ และอีกชนิดคือ เอสเอสดีจาก DDR SDRAM หรือแรมที่ใช้เป็นหน่วยความจำหลักในคอมพิวเตอร์ที่เรารู้จักดี ซึ่งเร็วกว่าหน่วยความจำแฟลชมากและเขียนทับได้ไม่จำกัด แต่เพราะว่า DDR SDRAM เป็นหน่วยความจำชั่วคราวดังนั้นการที่จะให้ทำงานเป็นหน่วยความจำถาวรก็ต้องมีแหล่งไฟฟ้าที่ถาวรเลี้ยงเพื่อไม่ให้ลืมข้อมูล ด้วยข้อจำกัดนี้ทำให้ไม่เป็นที่นิยมในการใช้ทั่วไปตามบ้านเรือนแต่นิยมในอุตสาหกรรมที่ต้องการแหล่งเก็บข้อมูลที่มีประสิทธิภาพสูง
ส่วนนี้รอเพิ่มเติมข้อมูล คุณสามารถช่วยเพิ่มข้อมูลส่วนนี้ได้ |
คุณสมบัติ | โซลิดสเตตไดรฟ์ | ฮาร์ดดิสก์ไดรฟ์ |
---|---|---|
เวลาที่รอจนกว่าจะพร้อมใช้งาน (Start-up time) | เกือบจะทันทีทันใด เพราะว่าไม่มีส่วนที่ต้องเคลื่อนไหวดังนั้นใช้เวลาเพียงไม่กี่มิลลิวินาทีก็พร้อมใช้งาน | ต้องใช้เวลาหลายวินาทีในการรอให้ฮาร์ดดิสก์หมุนจนได้ความเร็วที่กำหนดจึงจะพร้อมใช้งาน |
การเข้าถึงข้อมูลโดยสุ่ม (Random access time) [1] | ประมาณ 0.1 มิลลิวินาที เร็วกว่าฮาร์ดดิสก์หลายเท่าเพราะว่าใช้หน่วยความจำแบบแรมในการเก็บข้อมูลซึ่งสามารถเข้าถึงข้อมูลได้โดยตรง | อยู่ในช่วง 2.9 (ฮาร์ดดิสก์คุณภาพสูงสำหรับเซิร์ฟเวอร์) ถึง 12 มิลลิวินาที (ฮาร์ดดิสก์โน้ตบุ๊ค) ขึ้นอยู่กับตำแหน่งหัวอ่าน ตำแหน่งข้อมูลที่ต้องการเข้าถึง และความเร็วในการหมุนของฮาร์ดดิสก์ [2] |
ความหน่วงเวลาในการอ่าน (Read latency time) [3] | ต่ำ เพราะสามารถเข้าถึงข้อมูลได้โดยตรง จึงทำให้การทำงานที่ต้องอ่านข้อมูลจากหลายๆ ไฟล์ จะเร็วกว่าฮาร์ดดิสก์อย่างเห็นได้ชัด ยกตัวอย่างเช่นการเปิดโปรแกรม หรือการเปิดเครื่อง (ดูเพิ่ม Amdahl's law).[4] | สูงกว่า SSD มาก เพราะการเข้าถึงข้อมูลต้องอาศัยการหมุนของจานแม่เหล็ก และการเลื่อนตำแหน่งของหัวอ่าน ดังนั้นตำแหน่งของข้อมูลที่ต้องการอ่านในฮาร์ดดิสก์จึงมีผลต่อความเร็วในการอ่านข้อมูลด้วย |
อัตราการส่งข้อมูล (Data transfer rate) | ค่อนข้างคงที่ แต่ถ้าหากมีการอ่านเขียนจากหลายๆ ที่มากเข้าก็จะส่งผลให้อัตราการส่งข้อมูลของ SSD ลดลงได้ โดย SSD ตามท้องตลาดทั่วไปจะมีอัตราการส่งข้อมูลอยู่ที่ 100 ถึง 600 เมกะไบต์ต่อวินาที ขึ้นอยู่กับรุ่นและยี่ห้อ และ SSD ระดับที่ใช้ในเชิงธุรกิจอาจจะมีอัตราการส่งข้อมูลถึงหลายจิกะไบต์ต่อวินาที | หากอ่านเขียนข้อมูลต่อเนื่องกันฮาร์ดดิสก์คุณภาพดีอาจจะมีอัตราการส่งข้อมูลถึง 140 เมกะไบต์ต่อวินาที แต่ในการใช้งานจริงๆ แล้วการอ่านเขียนข้อมูลไม่ได้ต่อเนื่องกันเสมอไป และเนื่องจากฮาร์ดดิสก์ต้องเสียเวลาในการเลื่อนหัวอ่านและรอการหมุนของจานแม่เหล็ก ดังนั้นในการทำงานจริงอัตราการส่งข้อมูลจะต่ำกว่ากรณีอ่านเขียนข้อมูลต่อเนื่องค่อนข้างมาก ซึ่งอัตราการส่งข้อมูลของฮาร์ดดิสก์ก็มักจะขึ้นอยู่กับความเร็วในการหมุนของจานแม่เหล็กโดยทั่วไปแล้วจะอยู่ในช่วง 4,200 ถึง 15,000 รอบต่อนาที [5] |
การกระจายของข้อมูล (Fragmentation) | เนื่องจาก SSD สามารถเข้าถึงข้อมูล ณ ตำแหน่งใดๆ ได้ทันที ดังนั้นการอ่านข้อมูลที่ต่อเนื่องกันนั้นไม่มีผลทำให้การอ่านเร็วขึ้นเท่าไหร่ใน SSD (โดยเฉพาะอย่างยิ่งการอ่านข้อมูลขนาดใหญ่กว่า 4 กิโลไบต์; ขนาดทั่วไปของแต่ละบล็อกข้อมูลในระบบไฟล์) ทำให้การกระจายของข้อมูลไม่ค่อยมีผลทำให้การอ่านข้อมูลช้าลงเช่นกัน[6] แต่การลดการกระจายของข้อมูลจะทำให้เกิดการเขียนไฟล์บน SSD อย่างมาก และเนื่องจาก SSD ส่วนใหญ่ในท้องตลาดใช้เซลล์ความจำแบบ NAND ซึ่งมีจำนวนครั้งในการเขียนข้อมูลทับได้จำกัด จึงส่งผลต่ออายุการใช้งานของ SSD[7][8] | ไฟล์ขนาดใหญ่หากเก็บในฮาร์ดดิสก์แล้วมักจะมีการกระจายของข้อมูลไฟล์นั้นไปยังส่วนต่างๆ ของจานแม่เหล็กของฮาร์ดดิสก์ ทำให้การอ่านไฟล์เดียวต้องอ่านจากหลายๆ ที่ซึ่งทำให้การอ่านข้อมูลช้าลงอย่างมาก ดังนั้นการลดการกระจายข้อมูลจำเป็นอย่างยิ่งที่ต้องทำเป็นประจำเพื่อรักษาประสิทธิภาพให้ดีอยู่เสมอ [9] |
เสียงรบกวน (Acoustic noise) | เนื่องจาก SSD ไม่มีชิ้นส่วนที่ต้องขยับเลยดังนั้นจึงเงียบกว่าฮาร์ดดิสก์เป็นธรรมดา แต่อาจจะมีเสียงรบกวนได้เล็กน้อยจากวงจรไฟฟ้าภายใน | ฮาร์ดดิสก์มีชิ้นส่วนมากมายที่ต้องขยับเช่นจานแม่เหล็กที่ต้องหมุนตลอดเวลาการทำงาน และหัวอ่านที่ขยับไปมาเมื่อมีการอ่านเขียนข้อมูล จึงทำให้เกิดเสียงอยู่ในระดับที่ได้ยินได้แต่ก็เบากว่าเสียงพัดลมระบายอากาศมาก |
การควบคุมอุณหภูมิ (Temperature control) [10] | SSD ไม่ต้องการการควมคุมอุณหภูมิเป็นพิเศษแต่อย่างใดเพราะสามารถทำงานได้อย่างไม่มีปัญหาในอุณหภูมิที่สูงกว่าฮาร์ดดิสก์ แต่ใน SSD สำรับการใช้งานเชิงธุรกิจชนิดที่เป็นการ์ดอาจจะมีฮีตซิงค์สำหรับระบายความร้อนมาด้วย | จากรายงานของบริษัท Seagate, ที่อุณหภูมิห้องสูงกว่า 95 องศาฟาเรนไฮต์ (35 องศาเซลเซียส) จะทำให้อายุการใช้งานฮาร์ดดิสก์สั้นลงได้ หากอุณหภูมิของไดรฟ์สูงกว่า 131 องศาฟาเรนไฮต์ (55 องศาเซลเซียส) ถือว่าร้อนเกินไป และอาจจำเป็นที่จะต้องติดพัดลมระบายอากาศ เพราะจะส่งผลต่ออายุการใช้งานอย่างมาก[11] แต่โดยทั่วไปแล้วเราใช้ฮาร์ดดิสก์โดยไม่ได้ติดตั้งระบบระบายความร้อนพิเศษเพิ่มเติมแต่อย่างใด |
ความทนทานต่อสภาพแวดล้อม (Susceptibility to environmental factors) [4][12][13] | ทนต่อแรงกระแทกและการสั่นสะเทือน เพราะไม่มีชิ้นส่วนที่ต้องเคลื่อนที่ | เนื่องจากมีหัวอ่านที่เคลื่อนที่และจานแม่เหล็กหมุน จึงอ่อนไหวต่อแรงกระแทกและการสั่นสะเทือนอย่างยิ่ง |
การติดตั้ง (Installation and mounting) | เนื่องจากทนทานต่อแรงกระแทก การสั่นสะเทือน และมีการปกปิดแผงวงจรไว้อย่างมิดชิดจึงไม่มีข้อควรระวังเป็นพิเศษในการติดตั้ง | เนื่องจากฮาร์ดดิสก์ทั่วไปไม่มีแผ่นปกปิดแผงวงจร ดังนั้นการติดตั้งจึงต้องระวังไม่ให้สัมผัสถูกแผงวงจร และจะต้องติดตั้งไว้ในที่ที่ไม่มีแรงกระแทกและการสั่นสะเทือน |
ความทนทานต่อสนามแม่เหล็ก (Susceptibility to magnetic fields]]) [14] | ไม่มีผลต่อสนามแม่เหล็ก | ในทางทฤษฎี สนามแม่เหล็กรุนแรงสามารถสร้างความเสียหายแต่ข้อมูลในจานแม่เหล็กได้ แต่อย่างไรก็ดีจานแม่เหล็กได้รับการป้องกันอย่างดีด้วยกล่องโลหะ |
น้ำหนักและขนาด (Weight and size) [12] | SSD ไม่มีอะไรมากไปกว่ากล่องใส่แผงวงจรที่มีชิพหน่วยความจำเชื่อมติดอยู่ จึงมีน้ำหนักเบาเมื่อเทียบกับฮาร์ดดิสก์ และขนาดก็เป็นไปตามกล่องใส่ซึ่งก็เป็นขนาดที่นิยมสำหรับฮาร์ดดิสก์นั่นคือ 1.8", 2.5" และ 3.5" | ปกติแล้วฮาร์ดดิสก์ขนาดเท่าๆ กับ SSD มักมีน้ำหนักมากกว่า ยกตัวอย่างเช่นฮาร์ดดิสก์ขนาด 3.5" จะมีน้ำหนักมากถึงประมาณ 700 กรัม |
ความน่าเชื่อถือ และอายุการใช้งาน (Reliability and lifetime) | เนื่องจากไม่มีชิ้นส่วนที่เคลื่อนที่ดังนั้นจึงไม่ต้องห่วงเรื่องความผิดพลาดทางกล ดังนั้นอายุการใช้งานจึงถูกำหนดโดยจำนวนครั้งในการเขียนทับ (ลบ แล้วเขียนใหม่) ของแต่ละเซลล์ความจำแบบ NAND ซึ่งจำกัด ซึ่งการแก้ปัญหาเฉพาะหน้าในปัจจุบันคือการเฉลี่ยการเขียนข้อมูลลงในแต่ละเซลล์ความจำให้เท่าเทียมเพื่อยืดอายุการใช้งานให้มากที่สุด โดยการใช้งานทั่วไปแล้ว SSD ก็ทนต่อการใช้งานได้นานปี [15][16][17][18][19] แต่สำหรับ SSD ที่ใช้หน่วยความจำแบบ DRAM ในการเก็บข้อมูลไม่มีปัญหาจำนวนครั้งในการเขียนซ้ำ แต่ก็จะต้องมีไฟฟ้าเลี้ยงตลอดเวลาเพื่อให้ DRAM รักษาข้อมูลที่เก็บไว้ (แม้ว่าตอนที่ไม่ได้ใช้งานก็ตาม) | ฮาร์ดดิสก์ไม่มีการจำกัดจำนวนครั้งในการเขียนทับ แต่ฮาร์ดดิสก์มีหัวอ่านที่เคลื่อนที่และจานแม่เหล็กหมุนดังนั้นสาเหตุการเสียของฮาร์ดดิสก์คือความผิดพลาดทางกลมากกว่า |
ราคาต่อความจุ (Cost per capacity) | SSD ที่ใช้เซลล์ความจำแบบ NAND หรือแบบที่หาซื้อได้ตามท้องตลาดนั้น ราคาอยู่ที่ประมาณ 27 บาทต่อจิกะไบต์ ขึ้นอยู่กับรุ่นและยี่ห้อ | ราคาอยู่ที่ประมาณ 2.5 บาทต่อจิกะไบต์สำหรับฮาร์ดดิสก์ 3.5" [20] และประมาณ 4 บาทต่อจิกะไบต์สำหรับฮาร์ดดิสก์ 2.5" |
ขนาดความจุ (Storage capacity) | ในปี ค.ศ. 2011 SSD มีขนาดความจุถีง 2 เทระไบต์ แต่ขนาด 64 ถึง 256 จิกะไบต์ได้รับความนิยมมากกว่า | ในปี ค.ศ. 2011 ฮาร์ดดิสก์มีความจุถึง 4 เทระไบต์ |
ความเท่าเทียมกันของความเร็วการอ่านและการเขียน (Read/write performance symmetry) | SSD ราคาถูกจะมีความต่างของความเร็วในการอ่านและความเร็วในการเขียนสูงโดยความเร็วในการเขียนต่ำกว่ามาก แต่เมื่อในรุ่นราคาแพงกว่าก็จะมีความใกล้เคียงกันมากขึ้น | ความเร็วในการเขียนต่ำกว่าความเร็วในการอ่านเล็กน้อย |
การบริโภคพลังงาน (Power consumption) | สำหรับ SSD ที่ใช้เซลล์ความจำแบบ NAND จะใช้พลังงานประมาณครึ่งถึงสามในสี่ของฮาร์ดดิสก์ แต่ใน SSD ที่ใช้หน่วยความจำ DRAM มักจะกินพลังงานมากพอๆ กับฮาร์ดดิสก์ และยังต้องมีแหล่งพลังงานแม้ตอนที่ไม่ได้ใช้งานด้วย [21][22] | ฮาร์ดดิสก์ที่บริโภคพลังงานน้อยที่สุดมีขนาด 1.8" และกินไฟเพียง 0.35 วัตต์ [23] ในฮาร์ดดิสก์ทั่วไปที่มีขนาด 2.5" (ใช้ในโน๊คบุ๊คส่วนใหญ่) กินไฟอยู่ที่ 2 ถึง 5 วัตต์ และฮาร์ดดิสก์ 3.5" อาจจะกินไฟได้ถึง 20 วัตต์ |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.