คำถามยอดนิยม
ไทมไลน์
แชท
มุมมอง
การอนุมาน
จากวิกิพีเดีย สารานุกรมเสรี
Remove ads
Remove ads
การอนุมาน[1] (อังกฤษ: inference) เป็นการคาดคะเนตามหลักเหตุผล[2] ที่แบ่งออกเป็นแบบหลัก ๆ 3 อย่างคือ[3]
- การอนุมานแบบนิรนัย (deductive inference) เป็นการสรุปผลจากข้อตั้งหรือข้ออ้างที่เป็นจริงหรือสมมุติว่าจริง โดยเหตุผล โดยหลักทางตรรกศาสตร์[4] หรือเป็นการสรุปผลว่าเป็นจริง อาศัยประพจน์หรือการประเมินที่เป็นจริง[5]
- การอนุมานแบบอุปนัย (inductive inference) เป็นการสรุปนัยทั่วไปจากข้อมูลที่สังเกตได้ หรือจากสัจพจน์[6]
- การอนุมานเชิงสถิติ (statistical inference) เป็นการสรุปผลหรือนัยทั่วไป จากข้อมูลตัวอย่างทางสถิติ โดยมีระดับความไม่แน่นอนในระดับหนึ่ง[5][6] ซึ่งอาจมองได้ว่า เป็นนัยทั่วไปของการอนุมานแบบอื่น
กฎการอนุมานเป็นประเด็นศึกษาอย่างหนึ่งในสาขาตรรกศาสตร์ การอนุมานของมนุษย์โดยทั่วไปเป็นประเด็นการศึกษาของสาขาจิตวิทยาเชิงประชาน (cognitive psychology) ส่วนนักวิจัยในเรื่องปัญญาประดิษฐ์พยายามสร้างระบบอนุมานอัตโนมัติ เพื่อเลียนแบบการอนุมานในมนุษย์
Remove ads
ตัวอย่างการอนุมานแบบนิรนัย
สรุป
มุมมอง
นักปรัชญากรีกโบราณได้กำหนดตรรกบท (syllogism) จำนวนหนึ่ง ซึ่งเป็นการอนุมานมีสามส่วน ที่สามารถใช้เป็นฐานในการหาเหตุผลที่ซับซ้อนยิ่ง ๆ ขึ้น ตัวอย่างต่อไปนี้เป็นที่รู้จักกันดีในการศึกษาเกี่ยวกับปรัชญาและตรรกศาสตร์
ตัวอย่างที่สมเหตุผล
- ก ทั้งหมดเป็น ข
- ค เป็น ก
- ดังนั้น ค จึงเป็น ข
เพื่อจะดูว่า บทเหล่านี้สมเหตุผลหรือไม่ เราสามารถแทนบทตั้งด้วยค่าที่เป็นจริง คือ
- มนุษย์ทั้งหมดต้องตาย (จริง)
- โสกราตีส เป็นมนุษย์คนหนึ่ง (จริง)
- ดังนั้น โสกราตีสจึงต้องตาย (จริง)
เราสามาถเห็นได้ว่า บทตั้งและบทสรุปนั้นเป็นความจริง แต่ว่า คำถามที่สำคัญเกี่ยวกับการอนุมานแบบนิรนัยก็คือว่า ค่าของความจริงจากบทสรุปนั้น ได้มาจากค่าความจริงของบทตั้งอย่างสมเหตุผลหรือไม่ คือ จริง ๆ แล้ว ความสมเหตุสมผล (validity) ของการอนุมาน ขึ้นอยู่กับรูปแบบของการอนุมาน ซึ่งก็หมายความว่า ความสมเหตุสมผลไม่ได้หมายถึงความจริงของบทตั้งหรือบทสรุป แต่มุ่งถึงรูปแบบของการอนุมาน บทอนุมานอาจจะสมเหตุผล แม้ว่าบทตั้งหรือบทสรุปอาจจะไม่จริง และบทอนุมานอาจจะไม่สมเหตุผล แม้ว่าบทตั้งหรือบทสรุปอาจจะเป็นจริง แต่ว่า บทอนุมานที่สมเหตุผล และบทตั้งที่เป็นจริง จะนำไปสู่บทสรุปที่เป็นจริงเสมอ เหมือนกับตัวอย่างที่ได้กล่าวมาแล้ว
ตัวอย่างที่ไม่สมเหตุผล
- ก ทั้งหมดเป็น ข
- ค เป็น ข
- ดังนั้น ค จึงเป็น ก
เพื่อแสดงว่า บทในรูปแบบนี้ไม่สมเหตุผล เราสามารถพิสูจน์ได้ว่า บทตั้งที่เป็นจริงจะนำไปสู่บทสรุปที่ไม่จริง คือ
ตัวอย่างสมเหตุผล แต่บทตั้งเป็นเท็จ
การอ้างเหตุที่สมเหตุผลแต่มีบทตั้งที่เป็นเท็จ อาจนำไปสู่บทสรุปที่เป็นเท็จ เช่นโดยใช้ตัวอย่างที่สมเหตุผล ดังที่ได้กล่าวมาแล้ว แต่ใช้บทตั้งที่เป็นเท็จ คือ
- คนสูงทั้งหมดเป็นชาวกรีก (เท็จ)
- จอห์น เลนนอน เป็นคนสูง (เท็จ)
- ดังนั้น จอห์น เลนนอน จึงเป็นชาวกรีก (เท็จ)
ดังนั้น แม้ว่าการอ้างเหตุที่สมเหตุผลอาจจะนำไปสู่ข้อสรุปที่เป็นเท็จโดยมีบทตั้งเป็นเท็จ แต่ว่า บทอนุมานนั้นสมเหตุผลเพราะว่า เป็นรูปแบบการอนุมานที่ถูกต้อง
นอกจากนั้น การอ้างเหตุที่สมเหตุผล ก็อาจจะนำไปสู่ข้อสรุปที่เป็นจริงโดยมีบทตั้งเป็นเท็จ เช่น
- คนสูงทั้งหมดเป็นนักดนตรี (เท็จ)
- จอห์น เลนนอน เป็นคนสูง (เท็จ)
- ดังนั้น จอห์น เลนนอน จึงเป็นนักดนตรี (จริง)
Remove ads
การอนุมานที่ไม่ถูกต้อง
การอนุมานอย่างไม่ถูกต้องเรียกว่าเหตุผลวิบัติ (fallacy) นักปรัชญาที่ศึกษาตรรกศาสตร์เชิงอรูปนัย (informal logic) ได้รวบรวมเหตุผลวิบัติไว้เป็นจำนวนมาก และนักจิตวิทยาเชิงประชาน ก็ได้แสดงหลักฐานว่ามนุษย์มีความเอนเอียงทางประชานมากมาย ที่นำไปสู่การอนุมานที่ไม่ถูกต้อง
ระบบอนุมานอัตโนมัติ
ระบบปัญญาประดิษฐ์เป็นระบบคอมพิวเตอร์เริ่มแรก ที่สามารถทำการอนุมานโดยตรรกะ เป็นประเด็นงานวิจัยที่ได้รับความสนใจยอดนิยม ทำให้พัฒนาการไปสู่โปรแกรมประยุกต์ที่ใช้ในอุตสาหกรรม ในรูปแบบของระบบผู้เชี่ยวชาญ และ business rule engine ต่อ ๆ มา ส่วนงานเร็ว ๆ นี้ในเรื่องการพิสูจน์ทฤษฎีบทโดยอัตโนมัติ เป็นระบบที่ต้องอาศัยตรรกศาสตร์เชิงรูปนัยมากกว่า
ระบบอนุมานมีจุดมุ่งหมายเพื่อขยายฐานความรู้โดยอัตโนมัติ ฐานความรู้หมายถึง กลุ่มประพจน์ที่เป็นตัวแทนความรู้เกี่ยวกับโลก ที่ระบบมี มีเทคนิคหลายอย่างที่สามารถใช้ในการขยายฐานความรู้โดยการอนุมานที่สมเหตุผล และข้อกำหนดความต้องการของระบบอีกอย่างหนึ่งก็คือ บทสรุปต้องตรงประเด็นกับงานที่กำลังทำอยู่
โดยใช้กับเว็บเชิงความหมาย
ระบบหาเหตุผลอัตโนมัติเร็ว ๆ นี้ได้ประยุกต์ใช้กับเว็บเชิงความหมาย ความรู้ในรูปแบบตรรกศาสตร์เชิงพรรณนา ที่กำหนดโดยรูปแบบหนึ่งของภาษา Web Ontology Language สามารถใช้ประมวลผลทางตรรกศาสตร์ คือสามารถทำการอนุมานโดยอัตโนมัติได้
การอนุมานทางสถิติแบบเบย์ และตรรกศาสตร์เชิงความน่าจะเป็น
นักวิทยาศาสตร์ที่ชอบใจการอนุมานแบบเบย์ (Bayesian inference) จะใช้กฎความน่าจะเป็นเพื่อหาคำตอบที่ดีที่สุด การอนุมานแบบนี้มีข้อดีหลายอย่าง เช่นการอนุมานแบบนิรนัยเป็นกรณีพิเศษของแบบนี้ ซึ่งทำให้นักวิชาการบางท่านเรียกความน่าจะเป็นแบบเบย์ ว่าเป็นตรรกศาสตร์เชิงความน่าจะเป็น ในรูปแบบนี้ ค่าความน่าจะเป็น เป็นเหมือนระดับความเป็นจริงในบทต่าง ๆ ประพจน์ที่เป็นจริงแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 1 และประพจน์ที่เป็นเท็จจะมีค่า 0 ดังนั้น เมื่อกล่าวว่า บทว่า "ฝนจะตกพรุ่งนี้" มีค่าความน่าจะเป็นเท่ากับ 0.9 จึงหมายความว่า ฝนมีโอกาสตกพรุ่งนี้ในระดับสูง
โดยใช้กฎความน่าจะเป็น ความน่าจะเป็นของบทสรุปและผลที่เป็นไปได้อย่างอื่น ๆ สามารถที่จะคำนวณได้ และคำตอบหรือคำอธิบายที่ดีที่สุด บ่อยครั้งก็คือบทสรุปหรือผลที่มีโอกาสมีค่าความน่าจะเป็นสูงสุด
ตรรกะลำดับทางเดียว
ลำดับบทอนุมานเรียกว่ามีลำดับทางเดียว (monotonic) ถ้าการเพิ่มบทอนุมานไม่สามารถเปลี่ยนบทสรุปที่สำเร็จแล้ว ถ้าไม่เป็นเช่นนั้น ลำดับบทอนุมานจะเรียกว่า ไม่มีลำดับทางเดียว (monotonic) การอนุมานแบบนิรนัยมีลำดับทางเดียว คือ ถ้ามีบทสรุปที่สำเร็จแล้วในลำดับบทตั้งชุดหนึ่ง บทสรุปนั้นจะยังเป็นจริงไม่ว่าจะเพิ่มบทอนุมานเพิ่มเข้าไปอีกแค่ไหน[7]
โดยเปรียบเทียบแล้ว การคิดหาเหตุผล (การอนุมาน) ในชีวิตประจำไม่ใช่มีลำดับทางเดียว เพราะมีโอกาสเสี่ยงคือเราอาจจะสรุปประเด็น โดยที่ไม่มีบทตั้งและบทอนุมานเพียงพอที่จะสรุป แต่เราก็รู้ว่า ความเสี่ยงนั้นเป็นเรื่องจำเป็นหรือนำไปสู่ประโยชน์ (เช่นในการวินิจฉัยทางการแพทย์) แต่เราก็จะรู้ด้วยว่า บทสรุปจากการอนุมานเช่นนี้อาจเปลี่ยนไปได้ เพราะว่า ข้อมูลใหม่ ๆ อาจจะทำให้ต้องเปลี่ยนการอนุมานและบทสรุป
Remove ads
ดูเพิ่ม
เชิงอรรถและอ้างอิง
แหล่งข้อมูลอื่น
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads