ไพรมอเรียล (อังกฤษ: primorial) เป็นคำที่รวมกันระหว่างจำนวนเฉพาะ (prime) กับแฟกทอเรียล (factorial) ตั้งโดย ฮาร์วีย์ ดับเนอร์ (Harvey Dubner) มีความหมายสองแบบ ดังที่จะได้กล่าวต่อไป

ฟังก์ชันไพรมอเรียลถูกสร้างขึ้นเพื่อเป็นข้อพิสูจน์ให้กับทฤษฎีบทของยุคลิด ว่ามีจำนวนเฉพาะเป็นจำนวนอนันต์

ความหมายที่หนึ่ง

Thumb
กราฟของ f (n) = pn# ลงจุดแบบลอการิทึม

ไพรมอเรียล pn# คือผลคูณของจำนวนเฉพาะ n ตัวแรก [1][2] นั่นคือ

เมื่อ pk คือจำนวนเฉพาะตัวที่ k

ตัวอย่างเช่น p5# คือผลคูณของจำนวนเฉพาะ 5 ตัวแรก

ลำดับจำนวนของไพรมอเรียล pn# บางตัวมีดังนี้

1, 2, 6, 30, 210, 2310, ... (ลำดับ OEISA002110)

ลำดับดังกล่าวรวมถึง p0# = 1 ซึ่งเป็นผลคูณว่างด้วย

อัตราการเติบโตของไพรมอเรียลในลำดับสามารถคำนวณได้จาก

เมื่อ exp คือฟังก์ชันเอกซ์โพเนนเชียล ex และ o คือสัญกรณ์โอเล็ก (ดูเพิ่มในสัญกรณ์โอใหญ่) [2]

ลอการิทึมธรรมชาติของไพรมอเรียลคือฟังก์ชันเชบีเชฟที่หนึ่ง (the first Chebyshev function) เขียนแทนด้วย ϑ (n) หรือ θ (n) ซึ่ง n จะเข้าใกล้เชิงเส้นเมื่อ n มีค่ามากๆ [3]

ความหมายที่สอง

Thumb
กราฟของฟังก์ชัน f (n) = n# (จุดสีแดง) เปรียบเทียบกับ n! ลงจุดแบบลอการิทึม

ไพรมอเรียล n# คือผลคูณของจำนวนเฉพาะทั้งหมดที่ไม่มากกว่า n เมื่อ n ≥ 1 [1][4] นิยามโดย

ซึ่งมีความหมายเทียบเท่ากับ [4]

เมื่อ π (n) คือฟังก์ชันนับจำนวนเฉพาะ (ลำดับ OEISA000720) โดยให้จำนวนของจำนวนเฉพาะไม่มากกว่า n

ตัวอย่างเช่น 7# คือผลคูณของจำนวนเฉพาะทั้งหมดที่ไม่มากกว่า 7 นั่นคือ

และเนื่องจาก π (7) = 4 ดังนั้นจึงสามารถคำนวณได้อีกวิธีเป็น

ลำดับจำนวนของไพรมอเรียล n# บางตัวมีดังนี้

1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, ...

จะเห็นว่าไพรมอเรียล n# ซึ่ง n เป็นจำนวนประกอบ จะซ้ำกับจำนวนที่อยู่ก่อนหน้าคือ (n − 1)# ตามที่ได้กำหนดไว้ในนิยาม

อัตราการเติบโตของไพรมอเรียลในลำดับสามารถคำนวณได้จาก

ตารางค่าไพรมอเรียล

ข้อมูลเพิ่มเติม n, n# ...
n n# pn pn#
0 ไม่นิยาม ไม่มีจำนวนเฉพาะ 1
1 1 2 2
2 2 3 6
3 6 5 30
4 6 7 210
5 30 11 2310
6 30 13 30030
7 210 17 510510
8 210 19 9699690
9 210 23 223092870
10 210 29 6469693230
11 2310 31 200560490130
12 2310 37 7420738134810
13 30030 41 304250263527210
14 30030 43 13082761331670030
15 30030 47 614889782588491410
ปิด

อ้างอิง

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.