Loading AI tools
จากวิกิพีเดีย สารานุกรมเสรี
ตัวแปรเสริมสโตกส์ (Stokes parameters) เป็นชุดของค่าสี่ค่าที่ใช้อธิบายสถานะของโพลาไรเซชัน ของคลื่นแม่เหล็กไฟฟ้า ตั้งชื่อตาม จอร์จ กาเบรียล สโตกส์ นักคณิตศาสตร์และนักฟิสิกส์ชาวไอร์แลนด์ ซึ่งเป็นผู้เสนอขึ้นในปี 1852
ตัวแปรเสริมเหล่านี้มักจะถูกเขียนในรูปแบบของเวกเตอร์ เรียกว่า เวกเตอร์สโตกส์ (Stokes vector) โดยแสดงเป็นฟังก์ชันของความเข้มรวมของลำแสง ระดับของโพลาไรเซชัน และตัวแปรเสริมที่เกี่ยวข้องกับรูปร่างเชิงวงรีของการโพลาไรซ์ ใช้เพื่ออธิบายแสงทั้งที่ไม่โพลาไรซ์ โพลาไรซ์บางส่วน และโพลาไรซ์ทั้งหมด ต่างจากวิธีการคำนวณของโจนส์ ซึ่งสามารถอธิบายได้เฉพาะแสงโพลาไรซ์ทั้งหมดเท่านั้น ยิ่งไปกว่านั้น การแทนด้วยค่านี้เหมาะสมอย่างยิ่งสำหรับการทดลอง เนื่องจากแต่ละค่าสอดคล้องกับผลรวมหรือความแตกต่างของความเข้มที่วัดได้ง่าย
ผลของระบบทางแสงที่มีต่อโพลาไรเซชันของแสงสามารถกำหนดได้โดยการสร้างเวกเตอร์สโตกส์สำหรับแสงที่ตกกระทบและใช้เมทริกซ์มึลเลอร์ เพื่อให้ได้เวกเตอร์สโตกส์ของแสงขาออกจากระบบ
เรามักจะนำตัวแปรเสริมสโตกส์มาเขียนรวมเป็นเวกเตอร์สโตกส์ ดังนี้:
เราสามารถมองว่าตัวแปรเสริมสโตกส์เป็นความเข้มทั่วไปสามค่า
สำหรับแสงโพลาไรซ์ทั้งหมด ซึ่งมีสถานะโพลาไรซ์แบบเดียวกันทั้งหมด สามารถแสดงได้เป็น
สำหรับลำแสงโพลาไรซ์บางส่วน ตัวแปรเสริมสโตกส์จะถูกกำหนดเป็นค่าเฉลี่ย สมการก่อนหน้าจะกลายเป็นอสมการ[1]:
โดย เรียกว่าเป็น อัตราโพลาไรเซชัน
เราสามารถให้คำจำกัดความของตัวแปรเสริมสโตกส์ได้หลายแบบขึ้นอยู่กับว่าอธิบายสถานะของโพลาไรซ์ของแสงอย่างไร
คลื่นระนาบอาจแสดงลักษณะเฉพาะด้วยเวกเตอร์คลื่น และแอมพลิจูดเชิงซ้อนของสนามไฟฟ้า และ อธิบายด้วยฐาน หรืออาจแสดงโดยใช้เวกเตอร์คลื่น เฟส และสถานะโพลาไรเซชัน โดย คือเส้นโค้งที่วาด สนามไฟฟ้าในระนาบหนึ่ง ๆ สถานะโพลาไรเซชันที่พบบ่อยที่สุดคือโพลาไรเซชันแบบเส้นตรง และแบบวงกลม ซึ่งเป็นกรณีพิเศษของสถานะทั่วไปของโพลาไรเซชันแบบวงรี
ตัวแปรเสริมสโตกส์ถูกนิยามตามองค์ประกอบของสนามไฟฟ้าโดย
โดยที่ดัชนีอ้างอิงถึงสามฐาน: ฐานอ้างอิงในระบบพิกัดคาร์ทีเซียน () ฐานที่ทำมุม 45 องศากับฐานอ้างอิง () และฐานวงกลม () โดยฐานวงกลมถูกกำหนดโดย
รูปทางขวาแสดงให้เห็นว่าเครื่องหมายบวกลบของตัวแปรเสริมสโตกส์มีความสัมพันธ์กับทิศทางการหมุนและการวางแนวของแกนเอกของวงรีอย่างไร
นอกจากนี้ยังสามารถแสดงตัวแปรเสริมสโตกส์ในทั้งสามฐานแต่ละฐานแยกกัน
ในฐาน () ตัวแปรเสริมสโตกส์ถูกนิยามโดย
ในฐาน แสดงได้เป็น
และในฐาน :
วิธีหนึ่งในการอธิบายโพลาไรเซชันคือการระบุแกนเอกและแกนโทของวงรีโพลาไรเซชัน การวางแนว และทิศทางการหมุน ความสัมพันธ์ระหว่างค่าต่าง ๆ ในของวงรีโพลาไรเซชันกับตัวแปรเสริมสโตกส์ อาจแสดงได้ดังนี้:
และในทางกลับกัน:
ตัวแปรเสริมสโตกส์อาจแสดงในรูปของพิกัดทรงกลม เรียกว่าทรงกลมปวงกาเร
ในที่นี้ , และ คือพิกัดทรงกลมของสถานะโพลาไรเซชันในปริภูมิสามมิติของตัวแปรเสริมสโตกส์สามตัวหลัง ตัวคูณ 2 อยู่ข้างหน้า แสดงถึงความจริงที่ว่าวงรีที่หมุนไป 180 องศาจะไม่ต่างจากเดิม ในขณะที่ตัวคูณ 2 ที่อยู่ข้างหน้า บ่งบอกว่าวงรีจะไม่สามารถแยกความแตกต่างได้เมื่อพลิกแกนทั้งสองตามด้วยการหมุน 90
สามารถหาค่าต่าง ๆ ในพิกัดทรงกลมจากตัวแปรเสริมสโตกส์ได้ด้วยสมการต่อไปนี้:
ตารางต่อไปนี้แสดงเวกเตอร์สโตกส์สำหรับสถานะโพลาไรเซชันของแสงที่พบได้บ่อย
โพลาไรเซชัน | เวกเตอร์สโตกส์ | โพลาไรเซชัน | เวกเตอร์สโตกส์ |
---|---|---|---|
เส้นตรงแนวนอน | เส้นตรงแนวตั้ง | ||
วงกลมวนซ้าย | วงกลมวนขวา | ||
เส้นตรงเฉียง องศา | ไม่โพลาไรซ์ |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.