భౌతిక శాస్త్రం
From Wikipedia, the free encyclopedia
Remove ads
చరిత్ర
Remove ads
సాంప్రదాయ యాంత్రికశాస్త్రం

16, 17 శతాబ్దాలలో జరిగిన ప్రధాన పరిణామాలలో కొన్ని: సౌర వ్యవస్థ భూగోళకేంద్రిత నమూనాను సూర్యకేంద్రిత నమూనాతో భర్తీ జరిగింది; 1609, 1619 మధ్య కెప్లర్ గ్రహాల గమనాన్ని నియంత్రించే నియమాలను నిర్ణయించాడు; టెలిస్కోపు, పరిశీలనా ఖగోళ శాస్త్రం పై గెలీలియో మార్గదర్శకమైన పనిచేశాడు; న్యూటన్, తన పేరును పొందిన, చలన, సార్వత్రిక గురుత్వాకర్షణ చట్టాలను ఆవిష్కరించి ఏకీకృతం చేశాడు;[1] న్యూటన్ మార్పు గణిత అధ్యయనమైన కలన గణితాన్నీ కూడా అభివృద్ధి చేశాడు, ఇది భౌతికశాస్త్ర సమస్యలను పరిష్కరించడానికి కొత్త గణిత పద్ధతులను అందించింది.[2]
పారిశ్రామిక విప్లవం సమయంలో పెరిగిన శక్తి అవసరాలు తీర్చడానికి జరిగిన పరిశోధన ప్రయత్నాల ఫలితంగా ఉష్ణగతికశాస్త్రం, రసాయనశాస్త్రం, విద్యుదయస్కాంతాల కొత్త నియమాలను కనుగొన్నారు.[3] అసాపేక్ష (సాధారణ) వేగంతో ప్రయాణించే రోజువారీ వస్తువుల కోసం సాంప్రదాయ భౌతికశాస్త్రంతో కూడిన చట్టాలు చాలా విస్తృతంగా ఉపయోగిస్తారు, ఎందుకంటే అవి అటువంటి పరిస్థితులలో చాలా దగ్గరి ఫలితాలను అందిస్తాయి. సాధారణ పరిణామాలలో క్వాంటం మెకానిక్స్, సాపేక్షత సిద్ధాంతాలు సరళతరం చెంది వాటి సాంప్రదాయ చట్టాలుగా మారుతాయి. అయితే చాలా చిన్న వస్తువులను, చాలా ఎక్కువ వేగాలను వివరించడంలో సాంప్రదాయ యాంత్రికశాస్త్ర లోపాలు, తేడాలు 20 వ శతాబ్దంలో ఆధునిక భౌతిక శాస్త్ర అభివృద్ధికి దారితీశాయి.

ఆధునిక భౌతికశాస్త్రం
క్వాంటం సిద్ధాంతంలో మాక్స్ ప్లాంక్ పరిశోధన అలాగే ఆల్బర్ట్ ఐన్స్టీన్ యొక్క సాపేక్షత సిద్ధాంతంతో ఆధునిక భౌతికశాస్త్రం 20 వ శతాబ్దం తొలినాళ్ళలో ప్రారంభమైంది. సాంప్రదాయ యాంత్రికశాస్త్రం అంచనా ప్రకారం కాంతి వేగం మారుతుంటుంది, ఇది మాక్స్వెల్ విద్యుదయస్కాంత సమీకరణలు ప్రతిపాదించే స్థిరమైన కాంతి వేగానికి వ్యతిరేకం; అతి-వేగంగా కదిలే వస్తువులకు సాంప్రదాయ యాంత్రికశాస్త్రం స్థానంలో ఐన్స్టీన్ ప్రత్యేక సాపేక్షత సిద్ధాంతం చేరడంతో ఈ వ్యత్యాసం సరిదిద్దబడింది. సాపేక్షతా సిద్ధాంతం, కాంతి స్థిరమైన వేగాన్ని అనుమతించింది.[4] కృష్ణవస్తు వికిరణాలు సాంప్రదాయ భౌతికశాస్త్రానికి మరో సమస్య, దీన్ని మాక్స్ ప్లాంక్ తన క్వాంటం ప్రతిపాదనతో పరిష్కరించాడు.
వెర్నర్ హైసెన్ బర్గ్, ఎర్విన్ ష్రోడింగర్, పాల్ డిరాక్ క్వాంటం యాంత్రికశాస్త్ర తొలి మార్గదర్శకులు.[5] వీరి ప్రారంభ పరిశోధన, అలాగే సంబంధిత రంగాలలో జరిగిన పరిశోధన నుండి కణ భౌతికశాస్త్ర ప్రామాణిక నమూనా ఉద్భవించింది.[6] 2012లో సెర్న్ (CERN) లో హిగ్గ్స్ బోసన్ కు అనుగుణమైన లక్షణాలతో ఒక కణాన్ని కనుగొన్న తరువాత [7] ప్రామాణిక నమూనా ముందుగా సూచించిన ప్రాథమిక కణాలు మాత్రమే ఉనికిలో ఉన్నట్లు కనిపిస్తుంది; ఏది ఏమయినప్పటికీ, ప్రామాణిక నమూనాను మించిన సూపర్సిమెట్రీ వంటి సిద్ధాంతాలలో పరిశోధన చురుకుగా జరుగుతుంది.[8] సంభావ్యత, సమూహాల వంటి గణితశాస్త్ర రంగాలు ఈ రంగానికి ఎంతో ముఖ్యం.
Remove ads
భౌతికశాస్త్ర శాఖలు

భౌతికశాస్త్రం వివిధ విశాల ఉత్పాతముల కలయికైనప్పటికీ దాని ప్రధానమైన శాఖలు సాంప్రదాయ యంత్రశాస్త్రము (classical mechanics), విద్యుదయస్కాంతత్వం (దృష్టి విషయముతో), సాపేక్ష వాదం (relativity), తాపగతిశాస్త్రం, క్వాంటం యంత్రశాస్త్రం (quantum mechanics). ఈ నూతన ప్రసంగాలలో ప్రతి ఓక్కటీ అనేక శోధనలలో పరీక్షించబడి ప్రకృతిలో వాటి ప్రబలమైన ప్రదేశాలలో ఖండితమైన సవుతుగా నిరూపింపబడినవి. ఉదాహరణకు, సాంప్రదాయ యంత్రశాస్త్రం దినదినానుభూతిలో వస్తువుల గతిని సరిగా వర్ణిస్తుంది కాని అణు పరమాణమున క్వాంటమ్ శాస్త్రముచే కొట్టుబడిపోతుంది, అదే కాంతి వేగం చేరుకునేప్పటికి సాపేక్షస్థితి గుణములు ముఖ్యమౌతాయి. ఈ వాదాలు చాలా కాలంగా బాగా అర్ధమైనను ఈ రంగాలలో నేటికీ యెడతెగకుండా చురుకైన పరిశోధన జరుగుతతుంది. ఉదాహరణకు, సాంప్రదాయ యంత్రశాస్త్రంలో ఒక ఆశ్చర్యకర అంశమైన ఏక సంకర వాదాన్ని (chaos theory) 20వ (20th) శతాబ్దంలో, అంటే ఐస్సాక్ న్యూటను (1642-1727) (1642-1727) యంత్రశాస్త్ర ఆదిమ రూపావిష్కరణ చేసిన 3 శతాబ్దాల తరువాత, అభివృద్ద్ధి చేశారు. ఈ ప్రధానాంశలయిన సిధ్ధాంతాలు ప్రత్యేకమైన విషయాల పరిశీలన,పరిశోధనకు ఆధారంగా ఉపయోపడుతున్నాయి.
సాంప్రదాయ యంత్రశాస్త్రము
సాంప్రదాయ యంత్రశాస్త్రం వస్తువుల మీద ప్రసరించే బలాల (forces) భౌతిక లక్షణాన్ని అధ్యయనం చేసింది. దీనిని తరచుగా "న్యూటోన్ యంత్రశాస్త్రం" (Newtonian Mechanics) అని ఐస్సాక్ న్యూటను పేరుతో, ఆయన చెప్పిన గమన శాశనాలతో (laws of motion) జత చేర్చి చెపుతారు. యంత్రశాస్త్రాన్ని మూడు భాగాలుగా చేస్తే మొదటిది స్టాటిక్స్ (statics) అనగా గమనం, చలనం లేని వస్తువుల లక్షణాలను అధ్యయనం చేసేది, రెండవది కినమాటిక్స్ (kinematics) అనగా గమనములోనున్న వస్తువుల వస్తువుల లక్షణాన్ని అధ్యయనం చేసేది, మూడవది డైనమిక్స్ (dynamics) అనగా బలానికి లోబడ్డ వస్తువుల చలన లక్షణాన్ని అధ్యయనం చేసేది. యెడతెగని మార్పుచెందే వస్తువుల యంత్రశాస్త్రమును కంటిన్యువం యంత్రశాస్త్రం (continum mechanics) అని అంటారు ఇందులో పదార్థ స్థితిబట్టి దృఢ యంత్రశాస్త్రము (solid mechanics), ద్రవ్య యంత్రశాస్త్రం (fluid mechanics) అని విభజించవచ్చు. ద్రవ్య వాయవ్య యంత్రశాస్త్రములో హైడ్రోస్టాటిక్స్ (hydrostatics), హైడ్రోడైనమిక్స్ (hydrodynamics), న్యూమాటిక్స్ (pnuematics), ఏరోడైనమిక్స్ (aerodynamics), ఇతర రంగాలు ఉన్నాయి.
Remove ads
అనువర్తతనం, ప్రభావం


అనువర్తిత భౌతికశాస్త్రం అనేది భౌతిక పరిశోధన కోసం ఒక సాధారణ పదం, ఇది ఒక నిర్దిష్ట ఉపయోగం కోసం ఉద్దేశించబడింది. అనువర్తిత భౌతికశాస్త్ర పాఠ్యాంశాల్లో సాధారణంగా భూగర్భశాస్త్రం లేదా ఎలక్ట్రికల్ ఇంజనీరింగ్ వంటి అనువర్తిత విభాగాలలో కొన్ని తరగతులు ఉంటాయి. ఇది సాధారణంగా ఇంజనీరింగ్కు భిన్నంగా ఉంటుంది, ఎందుకంటే అనువర్తిత భౌతికశాస్త్రవేత్త ప్రత్యేకంగా ఏదీ రూపకల్పన చేయకపోవచ్చు, కానీ కొత్త సాంకేతిక పరిజ్ఞానాలను అభివృద్ధి చేయడం లేదా సమస్యను పరిష్కరించే లక్ష్యంతో భౌతికశాస్త్రాన్ని ఉపయోగించవచ్చు.
ఈ విధానాన్ని అనువర్తిత గణితంతో పోల్చొచ్చు. అనువర్తిత భౌతికశాస్త్రవేత్తలు శాస్త్రీయ పరిశోధనలో భౌతికశాస్త్రాన్ని ఉపయోగిస్తారు. ఉదాహరణకు, యాక్సిలరేటర్-భౌతికశాస్త్రంలో పనిచేసే వ్యక్తులు సైద్ధాంతిక-భౌతికశాస్త్ర పరిశోధన కోసం మెరుగైన కణ డిటెక్టర్లను రూపొందించడానికి ప్రయత్నించవచ్చు.
భౌతికశాస్త్రం ఇంజనీరింగ్లో ఎక్కువగా ఉపయోగించబడుతుంది. వంతెనలు, ఇతర స్థిర నిర్మాణాల నిర్మాణంలో యాంత్రికశాస్త్రం ఉప క్షేత్రమయిన స్టాటిక్స్ ఉపయోగించబడుతుంది. ధ్వనిశాస్త్రం, ధ్వని నియంత్రణపై అవగాహన మెరుగైన కచేరీ హాళ్ళను నిర్మించడానికి ఉపయోగపడుతుంది; అదేవిధంగా, ఆప్టిక్స్ వాడకంతో మంచి ఆప్టికల్ పరికరాలను సృష్టించగలం. మరింత మెరుగైన వాస్తవిక ఫ్లైట్ సిమ్యులేటర్లు, వీడియో గేమ్స్, చలనచిత్రాల నిర్మానానికి భౌతికశాస్త్ర అవగాహన అవసరం. భౌతికశాస్త్ర పరిజ్ఞానం ఫోరెన్సిక్ పరిశోధనలలో కూడా చాలా కీలకం.
ప్రస్తుత పరిశోధన
భౌతికశాస్త్రంలో పరిశోధన ఎన్నో రంగాలలో నిరంతరం అభివృద్ధి చెందుతోంది. ఘనీకృత పదార్థ భౌతికశాస్త్రంలో, ఒక ముఖ్యమైన పరిష్కారం కాని సమస్య అధిక-ఉష్ణోగ్రత సూపర్ కండక్టివిటీ .[9] అనేక ఘనీకృత పదార్థ ప్రయోగాలు పని చేయగల స్పింట్రోనిక్స్, క్వాంటం కంప్యూటర్లను రూపొందించడాన్ని లక్ష్యంగా పెట్టుకున్నాయి.[10][11]
కణ భౌతికశాస్త్రంలో, ప్రామాణిక నమూనాకు మించిన భౌతికశాస్త్రానికి ప్రయోగాత్మక ఆనవాలు కనిపించడం ప్రారంభించాయి. వీటిలో ప్రధానమైనవి న్యూట్రినోలు ద్రవ్యరాశిని కలిగి ఉన్న సూచనలు. ఈ ప్రయోగాత్మక ఫలితాలు దీర్ఘకాలికంగా ఉన్న సౌర న్యూట్రినో సమస్యను పరిష్కరించినట్లు కనిపిస్తుంది, భారీ-న్యూట్రినోల భౌతికశాస్త్రంలో క్రియాశీల ప్రయోగాత్మక పరిశోధన జరుగుతుంది. లార్జ్ హాడ్రాన్ కొలైడర్ ఇప్పటికే హిగ్స్ బోసాన్ను కనుగొంది, అయితే భవిష్యత్ పరిశోధన సూపర్సిమెట్రీని నిరూపించడం లేదా తోసిపుచ్చడమే లక్ష్యంగా పెట్టుకుంది. కృష్ణ పదార్థం, డార్క్-శక్తుల యొక్క ప్రధాన రహస్యాలను అర్థంచేసుకోడానికి కూడా ప్రస్తుతం పరిశోధనలు కొనసాగుతున్నాయి.[12]
ఏకీకృతం చేసే క్వాంటం గురుత్వాకర్షణ కోసం ప్రయత్నాలు, అర్ధ శతాబ్దానికి పైగా జరుగుతున్నాయి. ప్రస్తుత ప్రముఖ అభ్యర్థులు ఎం-సిధ్ధాంతం, సూపర్ స్ట్రింగ్ సిధ్ధాంతం, లూప్ క్వాంటం గురుత్వాకర్షణ.
సంక్లిష్ట భౌతికశాస్త్రం అంతర్-విభాగ పరిశోధనా రంగంగా ఎదిగింది. ఏరోడైనమిక్స్, అల్లకల్లోలం వంటి దృగ్విషయాల అధ్యయనం, జీవ వ్యవస్థలలో క్రమనిర్మాణం యొక్క పరిశీలన, ఈ రంగానికి మంచి ఉదాహరణలు. ఫ్లూయిడ్ మెకానిక్స్ యొక్క 1932 వార్షిక సమీక్షలో, హోరేస్ లాంబ్ ఇలా అన్నారు:
నేను ఇప్పుడు వృద్ధుడిని, నేను చనిపోయి స్వర్గానికి వెళ్ళినప్పుడు రెండు విషయాల గురించిన జ్ఞానోదయం కోసం ఆశిస్తున్నాను. ఒకటి క్వాంటం విద్యుత్-గతిశాస్త్రం, మరొకటి ద్రవాల అల్లకల్లోలమైన కదలిక. నేను మొదటిదాని గురించి ఆశాజనకంగా ఉన్నాను.
Remove ads
అనాథ పేజీలకు లంకెలు
మూలాలు
ఇవి కూడా చూడండి
వనరులు
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads