Remove ads
From Wikipedia, the free encyclopedia
ఒకే సరళ రేఖ మీదలేని మూడు బిందువులను సరళరేఖా ఖండాలతో కలుపగా వచ్చే పటాన్ని త్రిభుజము లేదా త్రికోణము అంటారు. ఇది ఒక సంవృత పటము. ఆ బిందువులను శీర్షము లనీ, రేఖా ఖండాలను భుజములు లేదా బాహువులు అనీ అంటారు. భుజము కొలతను కూడా భుజము అనే అంటారు. ఒక శీర్షము రెండు భుజముల ఖండన బిందువు; ఇందులో, శీర్షమును స్థిరముగా ఉంచి, ఒక భుజము నుంచి రెండవ భుజమునకు వెళ్లే వ్యాప్తిని ఆ రెండు భుజముల మధ్య గల కోణము అంటారు. ఈ కోణమును డిగ్రీలలో కొలుస్తారు. ఒక త్రిభుజము ఒక సమతలము పైన ఉంటుంది. ఇంకోరకంగా చెప్పాలంటే, ఒక సమతలంలో మూడు భుజాలు (బాహువులు) గల సరళ సంవృత పటమును త్రిభుజం అంటారు. దీనిని త్రికోణం, త్రిభుజం లేదా త్రిభుజి (Triangle) అని కూడా అంటారు. దీనిని ముక్కోణం అని కూడా అనవచ్చును. A, B,, C శీర్షాలుగా గల త్రిభుజాన్ని గా సూచిస్తారు.
త్రిభుజాలకు సంబంధించి ఈ లక్షణము ముఖ్యమైనది. దీనిని త్రికోణీయ అసమత అంటారు. దీని ప్రాముఖ్యత ఏమిటంటే, a, b, c అనే మూడు ధన సంఖ్యలు ఇస్తే, ఇవి భుజాల కొలతలుగా గల త్రిభుజాన్ని నిర్మించాలంటే, ఈ మూడు సంఖ్యలు త్రికోణీయ అసమతను పాటించాలి. అంటే, వీటిలో ఏ రెండింటి మొత్తమైనా మూడవ దానికన్న ఎక్కువ అయి ఉండాలి. అంటే, a < b + c, b < c + a, c < a + b జరగాలి. ఇది జరిగితే, a, b, c కొలతలుగా గల త్రిభుజాన్ని నిర్మించగలము. విపర్యయంగా, ఈ త్రికోణీయ అసమతను పాటించని ధన సంఖ్యలు a, b, c లు భుజముల కొలతలుగా గల త్రిభుజాన్ని నిర్మించలేము. ఉదాహరణకు, a = 1, b = 2, c = 3 అయితే, 1, 2, 3 లు త్రికోణీయ అసమతను (3 = 2 + 1) పాటించడము లేదు. కనుక, 1, 2, 3 కొలతలుగా గల త్రిభుజాన్ని నిర్మించలేము. ఇలాంటి మరియొక త్రికము (3, 6, 9).
ఈ ధర్మమును త్రికోణీయ అసమత నుంచి రాబట్టవచ్చు.
కాని, మూడు కోణములు తెలిస్తే, ఆమూడూ కోణాలుగా కలిగిన త్రిభుజాలు చాలా ఉంటాయి; వాటి భుజాల కొలతలు తేడాగాఉంటాయి. ఇలాంటి త్రిభుజాలను సరూప త్రిభుజములు అంటారు.
భుజాల కొలతలు ఆధారంగా త్రిభుజములు మూడు రకములు
సమత్రికోణం | ద్విసమత్రికోణం | విషమబాహు |
త్రిభుజము లోని ఒక కోణము 90 డిగ్రీల కన్న తక్కువ ఉంటే, ఆకోణాన్ని లఘు కోణము అంటారు; ఆ కోణము 90 డిగ్రీ లకన్న ఎక్కువ ఉంటే, దానిని గురు కోణము అంటారు; ఆ కోణము సరిగా 90 డిగ్రీలు ఉంటే, దానిని సమకోణము లేదా లంబకోణము అంటారు. కోణముల కొలతలు ఆధారంగా త్రిభుజాలు మూడురకములు :
లంబత్రికోణం | గురు కోణ త్రిభుజం | లఘు కోణ త్రిభుజం |
త్రిభుజమునకు సంబంధించి ఆరు కొలతలు ఉంటాయి. అవి : భుజముల కొలతలు మూడు, కోణముల కొలతలు మూడు. ఒక త్రిభుజము లోని మూడు భుజముల కొలతలు, మూడుకోణముల కొలతలు వరుసగా మరియొక త్రిభుజము లోని మూడు భుజములు, మూడు కోణముల కొలతలకు సమానమైనచో ఆ రెండు త్రిభుజములను సర్వసమములు అంటారు. రెండు త్రిభుజములు సర్వసమములు అగుటకు నియమలు:
భు.భు.భు నియమం | భు.కో.భు నియమం | కో.భు.కో. నియమం | లం.క.భు నియమం |
ఒక త్రిభుజంలోని మూడు భుజాల కొలతలు, రెండవ త్రిభుజంలోని మూడు భుజాల కొలత లకు సమానంగా ఉంటే ఆ రెండు త్రిభుజాలు సర్వసమములు.
ఒక త్రిభుజము లోని రెండు భుజాలు, వాటి మధ్య కోణం, రెండవ త్రిభుజము లోని రెండు భుజాలు, వాటి మధ్య కోణం నకు సమానంగా ఉన్నచో అవి సర్వసమములు.
ఒక త్రిభుజములోని ఒక భుజం, దాని రెండు ఆసన్న కోణాలు, రెండవ త్రిభుజములోని ఒక భుజం దాని రెండు అసన్న కోణాలకు సమానమైతే అవి సర్వసమములు.
ఒక లంబకోణ త్రిభుజములో కర్ణము, భుజము, వేరొక లంబకోణ త్రిభుజములో కర్ణము, భుజము లకు సమానమైన అవి సర్వ సమములు.
ఉదాహరణకు, ఏ రెండు సమబాహు త్రిభుజములు అయినా సరూపములు (రెండు త్రిభుజముల లోని ప్రతి కోణము 60 డిగ్రీలు కనక). కాని రెండు సమ బాహు త్రిభుజములు సర్వ సమములు కానక్కర లేదు. 2 భుజము కొలతగా కలిగిన సమ బాహు త్రిభుజము, 3 భుజము కొలతగా కలిగిన సమ బాహు త్రిభుజములు రెండూ సరూపములేకాని సర్వ సమములు కావు.
Δ ABC, Δ DEF లు సరూపములు, కోణము A = కోణము D, కోణము B = కోణము E, కోణము C = కోణము F అయితే a : d = b : e = c : f దీనినే a : b : c = d : e : f అని కూడా వ్రాస్తాము.
ఉదాహరణకు, Δ ABC లో a = 2, b = 3, c = 4, Δ DEF లో d = 6, e = 9, f = 12 అయితే a : b : c = d : e : f కనుక Δ ABC, Δ DEF లు సరూపములు.
త్రిభుజ భుజాల మొత్తాన్ని త్రిభుజము యొక్క చుట్టుకొలత ఆంటారు. AB, BC, CA లు త్రిభుజ భుజాలైన AB+BC+CA అనునది త్రిభుజము చుట్టుకొలత అవుతుంది.
ఒక త్రిభుజం ఆక్రమించే స్థలం (అంతరభాగము) వైశాల్యాన్ని ఆ త్రిభుజ వైశాల్యము అంటారు.
ఒక త్రిభుజం యొక్క క్రింది భుజమును "భూమి" (base) అంటారు. భూమి యొక్క ఎదుటి శీర్షము నుండి భూమికి గీయబడిన లంబ రేఖా ఖండము యొక్క పొడవును ఆ త్రిభుజము యొక్క "ఎత్తు" అంటాము. భూమి, ఎత్తు, ల లబ్ధములో సగము ఆ త్రిభుజ వైశాల్యం అవుతుంది.
త్రిభుజము భూమి "b", ఎత్తు "h" అయినపుడు
త్రిభుజ వైశాల్యము = .
త్రిభుజ భుజాలు a,b,c అయినపుడు, వాటి సరాసరి (a+b+c)/2 అవుతుంది. ఈ సరాసరిని "s"గా తీసుకుంటే, త్రిభుజ వైశాల్యం s, (s-a), (s-b), (s-c) ల లబ్ధము యొక్క వర్గమూలానికి సమానమవుతుంది.
త్రిభుజములో ఒక భుజము యొక్క మధ్య బిందువు నుండి ఎదుటి శీర్షానికి గీచిన రేఖాఖండాన్ని మధ్యగత రేఖ అందురు. త్రిభుజము లో మధ్యగత రేఖలు అనుషక్తములు (అనగా, ఒక బిందువు వద్ద ఖండించు కుంటాయి). ఆఖండన బిందువును కేంద్రభాసము అందురు. దీనిని "G"తో సూచిస్తారు. కేంద్రభాసము, మధ్యగత రేఖను 1:2 నిష్పత్తిలో విభజిస్తుంది.
ఒక త్రిభుజము యొక్క మూడు శీర్షముల గుండా పోవు వృత్తాన్ని పరివృత్తం అంటారు. త్రిభుజము యొక్క మూడు భుజాల లంబ సమద్విఖండన రేఖలు అనుషక్తములు. ఆ అనుషక్త బిందువు పరివృత్త కేంద్రం అవుతుంది. దీనిని "S"తో సూచిస్తారు. పరివృత్త కేంద్రం నుండి త్రిభుజ శీర్షాలు సమాన దూరంలో ఉంటాయి.
త్రిభుజ భుజాల నుండి సమాన దూరంలో గల బిందువును త్రిభుజ అంతర కేంద్రం అందురు. త్రిభుజ కోణ సమద్విఖండన రేఖలు అనుషక్తములు. ఆ అనుషక్త బిందువు దాని అంతర వృత్త కేంద్రం అవుతుంది. దీనినుండి త్రిభుజ భుజాలు సమాన దూరంలో ఉంటాయి. దీనిని "I"తో సూచిస్తారు. ఇది ఎల్లప్పుడూ త్రిభుజము అంతరం లోనే ఉంటుంది.
మధ్యగత రేఖల అనుషక్త బిందువు, కేంద్రభాసము | త్రిభుజ ఉన్నతుల అనుషక్త బిందువు, లంబ కేంద్రం | పరివృత్త కేంద్రం | అంతర కేంద్రం |
ఒక త్రిభుజంలో గల ఈ దిగువనీయబడిన తొమ్మిది బిందువుల గుండా పోయే లా ఒక వృత్తమును గీయవచ్చును. ఆ వృత్తమును నవ బిందు వృత్తము అంటారు.
పై 9 బిందువుల గుండా పోవు వృత్తమును "నవ బిందు వృత్తము" (nine-point circle) అంటారు.
పై పటంలో వృత్తము తొమ్మిది జ్యామితీయ బిందువులైన గుండా పోయింది. ఈ బిందువులలో D, E,, Fలు త్రిభుజ భుజాల మధ్య బిందువులు. G, H,, I బిందువులు త్రిభుజ భుజాలపై గల లంబ పాదములు. J, K,, L బిందువులు త్రిభుజ శీర్షములైన "A", "B", "C" ల నుండి లంబకేంద్రం (S) కు గల రేఖాఖండముల యొక్క మధ్య బిందువులు.
జ్యామితిలో ఆయిలర్ రేఖ అనునది త్రిభుజంలో ఈ క్రింది నాలుగు బిందువుల గుండా పోవు రేఖ.
పైన చెప్పిన త్రిభుజాల ఫలితాల వివరాలకు, నిరూపణలకు ఉపయుక్తమైన పుస్తకం: ఆచార్య N.Ch. పట్టాభిరామాచార్యులు వ్రాసిన " A treatise on Pure Geometry ", ప్రచురణ : Mathematical Scientist Club, # 1-1-658, near NIT, Warangal-506004.
త్రిభుజీయ సంఖ్య అనగా ఒక సమబాహు త్రిభుజం యేర్పరచుటకు కావలసిన వస్తువుల సంఖ్య. వివాదానికి ఆస్కారం లేకుండా, ముందుగా "1" అను సంఖ్యను త్రిభుజీయ సంఖ్య అని నిర్వచిస్తాము. దీనిని T1తో సూచిస్తాము. రెండు వస్తువులు భుజంగా గల త్రిభుజం యేర్పరచాలంటే మూడు వస్తువులు కావాలి. అందువలన "3" త్రిభుజీయ సంఖ్య. దీనిని T2తో సూచిస్తాము. మూడు వస్తువులు భుజంగా గల సమబాహు త్రిభుజం యేర్పరచాలంటే ఆరు వస్తువులు కావాలి. అందువలన "6" త్రిభుజీయ సంఖ్య అవుతుంది. దీనిని T3తో సూచిస్తాము. అదేవిధంగా "n" వస్తువులు గల సమబాహు త్రిభుజం కావాలంటే "n", దాని తర్వాత సంఖ్య "n+1" ల లబ్ధంలో సగ భాగము త్రిభుజీయ సంఖ్య అవుతుంది. దీనిని Tnతో సూచిస్తాము. అంటే, Tn = n (n+1)/2. పటంలో మొదటి 6 త్రిభుజీయ సంఖ్యలను చూపడం జరిగింది.
n ధన పూర్ణాంకమైతే, Tn+1 = Tn + (n+1) అని గమనించవచ్చును.
కొన్ని త్రిభుజీయ సంఖ్యలు దిగువనీయబడినవి:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.