From Wikipedia, the free encyclopedia
பிபனாச்சி எண்கள் (Fibonacci numbers) என்பவை கணிதத்தில் ஒரு குறிப்பிட்ட முறையில் அடுக்கப்படும் ஓர் எண் தொடரின் வரும் எண்கள். இந்த எண் தொடரில், அடுத்தடுத்து வரும் இரண்டு எண்களின் கூட்டுத்தொகையாக அமைவது அதற்கு அடுத்து வரும் எண். காட்டாக, என்று தொடரும் இவ்வரிசை. முதல் இரண்டு எண்களாக 1, 1 என்பதை எடுத்துக்கொண்டால் அடுத்து வரும் மூன்றாவது எண் 1+1 = 2. நான்காவது எண் 1+2 = 3, ஐந்தாவது எண் 2+3 = 5, இப்படியாக இவ் எண் தொடர் விரிகின்றது. இவ் எண்தொடரும் இதன் பண்புகளும் கணக்கில் அதிகம் தொடர்பு இல்லாதவரையும் ஈர்க்கும் ஒரு கணிதக் கருத்து. இயற்கையிலும் இந்த ஃபிபனாச்சி எண் தொடரில் வரும் எண்கள் பரவலாகக் காணப்படுகின்றன (பூக்களின் இதழ்களின் எண்ணிக்கை, இலைகளின் அடுக்கு முதலானவை).
இந்தக் கட்டுரையில் மேற்கோள்கள் அல்லது உசாத்துணைகள் எதுவும் இல்லை. |
வடமொழியில் 'சந்தஸ் சாஸ்திரம்' (சீர் இயல்) என்று பிங்களர் (ஏறக்குறைய கி.மு.3-ஆவது நூற்றாண்டு) எழுதிய நூலில் 'மாத்ரா மேரு' என்ற பெயரில் முதன் முதல் இக்கருத்துப்பொருள் பேசப்பட்டது. ஆறாவது நூற்றாண்டில் விரஹங்கர் எழுதிய யாப்பிலக்கண நூல்களில் மறுபடியும் பேசப்பட்டது. 12 ஆவது நூற்றாண்டில் ஹேமசந்திரர் என்பவருடைய நூலிலும் விரஹங்கர் நூலுக்கு கோபாலர் எழுதிய உரைநூலிலும் இது விபரமாகப் பேசப்படுகிறது.
மேற்கத்திய வரலாற்றில் லியானார்டோ பிசானோ பிகோலோ (அவருடைய இன்னொரு பெயர் ஃபிபனாச்சி) (13-ஆவது நூற்றாண்டு) எழுதிய லிபர் அபேஸி (1202) என்ற இலத்தீன் நூலில் முதன் முதல் பேசப்பட்டு இன்றும் பல அறிவியல் துறைகளிலும் அவருடைய பெயரைத் தாங்கி நிற்கும் பொருள் இது.
இப்படிப் போகிறது இத் தொடர்.
இத்தொடரின் விதி:
படிமத்தைப்பார். ஒரு மரமும் அதன் கிளைகளும் காண்பிக்கப் பட்டிருக்கின்றன. ஒவ்வொரு 'பழைய' கிளையிலும் (மரத்தையும் சேர்த்துத் தான்) ஓராண்டுக் கொருமுறை புதுக் கிளை முளைக்கிறது. இப்படி முளைக்கும் ஒவ்வொரு புதுக்கிளையும் அடுத்த ஆண்டும் புதுக் கிளையாகவே இருந்து அதற்கு அடுத்த ஆண்டிலிருந்து பழைய கிளையாக பங்கு பெறுகிறது. ஆண்டுகளுக்குப்பிறகு உள்ள கிளைகளின் எண்ணிக்கை … .
இத் தொடரும் பின்னத்தின் மதிப்பை என்று கொண்டால் நமக்குக் கிடைக்கும் சமன்பாடு:
இதனுடைய (நேர்மத) தீர்வு . இதற்குக் குறியீடு:
இத்தொடரும் பின்னத்தின் ஒருங்குகள்:
இவ்வொருங்குகளின் விகுதிகள் தான் ஃபிபனாச்சி தொடர் எண்கள்.
இவ்வொருங்குகள் மிக மிக மெதுவாகத்தான் அதன் எல்லையை அடைகின்றன. எல்லாத்தொடரும் பின்னங்களிலும் இதுதான் மிக மெதுவாக எல்லையை நோக்கிச் செல்லும் ஒருங்குகளையுடையது. ஒரு ஒப்பிடுதலுக்கு வின் தொடரும் பின்னத்தைப் பார்த்தோமானால்,
வின் 6-ஆவது ஒருங்கு க்கும் க்கும் உள்ள வித்தியாசம் ;
இன் 6-ஆவது ஒருங்கு க்கும் க்கும் உள்ள வித்தியாசம் .
ஆக, இன் தொடரும் பின்னத்தின் ஒருங்கும் வேகம் நூறு பங்கு குறைவு!.
பாஸ்கல் முக்கோணத்திலிருந்து ஒவ்வொரு நிரை (Row) யாகப் படித்தால் ஒவ்வொரு அடுக்குக்குகந்த ஈருறுப்புக் கெழுக்கள் கிடைக்கும் என்பது கணித உலகில் எல்லோருக்கும் தெரிந்ததே. பாஸ்கலுடைய(1623–1662) காலத்திற்கு 200 ஆண்டுகளுக்குப்பிறகு வந்த லூகஸ் 1872 இல் அதே பாஸ்கல் முக்கோணத்தில் ஏறுமுக மூலைவிட்டங்களின் உறுப்புகளைக் கூட்டினால் ஃபிபனாச்சி எண்களின் தொடர் கிடைப்பதை கவனித்தார். இதைத் தான் படிமம் காட்டுகிறது. இதில் விந்தை என்னவென்றால் 200 ஆண்டுகள் இதை ஒருவரும் கவனித்ததாகத் தெரியவில்லை என்பதுதான்.
கணிதம் சம்பந்தப்பட்டவரை இதில் ஆச்சரியப்படத் தக்கபடி ஒன்றுமில்லை. ஏனென்றால், படிமத்தில் காட்டியபடி
இவைகளை நிரல் நிரலாகக்கூட்டினால்,
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.