கணிதத்திலும் கோட்டுருவியலிலும்பல்கோட்டுரு (multigraph) என்பது பல்விளிம்புகள் (இணை விளிம்புகள்) கொண்டிருப்பதற்கு அனுமதிக்கப்பட்ட கோட்டுருவாகும்.[1]) அதாவது, பல்கோட்டுருவில் ஒரே இரு முனைகளை ஒன்றுக்கு மேற்பட்ட விளிம்புகள் இணைத்திருக்கும்.
ஒரு விளிம்பின் தன்னடையாளம் என்பது அது இணைக்கும் முனைகளைக் கொண்டு வரையறுக்கப்படுகிறது. இருவிதமான பல்விளிம்புகள்:
தன்னடையாளமற்ற பல்விளிம்புகள் (Edges without own identity):
தன்னடையாளமற்ற பல்விளிம்புகள் என்பது, ஒரே சோடி முனைகளுக்கிடையே ஒரு விளிம்பு பலதடவைகள் அமையும் ஒரே விளிம்பைக் குறிக்கிறது.
தன்னடையாளமுள்ள பல்விளிம்புகள் (Edges with own identity):
வெவ்வேறு விளிம்புகள், ஒரே சோடி முனைகளை இணைக்குமானால் அந்தப் பல்விளிம்புகள் தன்னடையாளமுள்ள பல்விளிம்புகள் ஆகும்.
ஒரு விளிம்பு இரு முனைகளை மட்டுமல்லாது, எத்தனை முனைகளையும் இணைக்கக்கூடிய பண்புடைய மீகோட்டுருவிலிருந்து பல்கோட்டுருவானது வேறுபட்டது. சில அறிஞர்கள் பல்கோட்டுருவையும் "போலி கோட்டுரு"வையும் ஒன்றாகக் கருதுகிறார்கள்; வேறு சிலர் போலி கோட்டுருவைக் கண்ணிகள் அனுமதிக்கப்பட்ட பல்கோட்டுருவாகக் கருதுகிறார்கள்
r: E → {{x,y}: x, y ∈ V}, ஒவ்வொரு விளிம்புடனும் ஒரு வரிசையற்ற சோடி முனைகளை கோர்க்கிறது.
சில அறிஞர்கள் ஒரு முனையுடனை அதனுடனேயே இணைக்கும் கண்ணிகளைக் கொண்டிருக்கவும் பல்கோட்டுருக்களை அனுமதிக்கின்றனர்.[2]வேறுசிலர் கண்ணிகளற்ற ஆனால் பல்விளிம்புகள் கொண்ட கோட்டுருக்களை பல்கோட்டுருக்கள் என்றும், கண்ணிகளும் பல்விளிம்புகளும் கொண்ட கோட்டுருக்களை போலி கோட்டுருக்கள் என்றும் வேறுபடுத்திக் குறிப்பிடுகின்றனர்.[3]
தன்னடையாளமற்ற விளிம்புகள் கொண்ட திசையுள்ள பல்கோட்டுரு
இக்கோட்டுரு G என்பது G:=(V,A) என்ற வரிசைச்சோடியாகும். இதில்:
V - முனைகளின் கணம்;
A திசையிடப்பட்ட விளிம்புகள் அல்லது விற்கள் அல்லது அம்புகள் என அழைக்கப்படும் முனைகளின் வரிசைச்சோடிகளின் பல்கணம்.
தன்னடையாளமுள்ள விளிம்புகள் கொண்ட திசையுள்ள பல்கோட்டுரு
இக்கோட்டுரு G:= (V, A, s, t) ஆகும். இதில்:
V - முனைகளின் கணம்
A - விளிம்புகளின் கணம்
, ஒவ்வொரு விளிம்புக்கும் அதன் மூல முனையை இணைக்கிறது.
, ஒவ்வொரு விளிம்புக்கும் அதன் இலக்கு முனையை இணைக்கிறது