நேர்மாறு முக்கோணவியல் சார்புகள்
From Wikipedia, the free encyclopedia
கணிதத்தில் நேர்மாறு முக்கோணவியல் சார்புகள் (inverse trigonometric functions) என்பவை முக்கோணவியல் சார்புகளின் நேர்மாறுச் சார்புகளாகும். இச்சார்புகளின் வீச்சுகள் மூல முக்கோணவியல் சார்புகளின் ஆட்களங்களின் உட்கணங்களாக இருக்கும் என்பதால் இவை அடிப்படை நேர்மாறு சார்புகளுக்குத் தேவையான பண்புகளைக் கொண்டிருக்காது. ஆறு முக்கோணவியல் சார்புகளும் ஒன்றுக்கு-ஒன்று சார்புகள் அல்ல. எனவே அவற்றுக்கான நேர்மாறு சார்புகளை வரையறுப்பதற்கு ஏற்றவகையில் அச்சார்புகளை கட்டுப்படுத்த வேண்டும்.
எடுத்துக்காட்டாக: -வர்க்கமூலச் சார்பு y2 = x, என வரையறுக்கப்பட்டுள்ளது போல
y = arcsin(x) -நேர்மாறு சைன் சார்பு, sin(y) = x என வரையறுக்கப்படுகிறது.
sin(y) = x -ஐ நிறைவு செய்யும் y -ன் மதிப்புகள் பல உள்ளன. sin(0) = 0, sin(π) = 0, sin(2π) = 0,... எனவே arcsin, பல மதிப்புகள் கொண்டுள்ளது. arcsin(0) = 0, arcsin(0) = π, arcsin(0) = 2π, ... . ஒரு மதிப்பு மட்டும் கொண்டதாக arcsin சார்பைக் கட்டுப்படுத்திக் கொள்ளலாம். இக்கட்டுப்பாட்டின்படி arcsin சார்பின் ஆட்களத்திலுள்ள ஒவ்வொரு x -க்கும் arcsin(x) -ன் மதிப்பு ஒன்றே ஒன்றாக இருக்கும். அம்மதிப்பு முதன்மை மதிப்பு (principal value) என அழைக்கப்படும். இந்தக் கட்டுப்பாடு மற்ற ஐந்து நேர்மாறு முக்கோணவியல் சார்புகளுக்கும் பொருந்தும்,
முதன்மை நேர்மாறுச் சார்புகள் பின்வரும் அட்டவணையில் தரப்பட்டுள்ளன.
பெயர் | வழக்கமான குறியீடு | வரையறை | x -ன் ஆட்களம் (மெய் மதிப்புகளுக்கு) | முதன்மை மதிப்பின் வழக்கமான வீச்சு (ரேடியன்) |
முதன்மை மதிப்பின் வழக்கமான வீச்சு (பாகை) |
---|---|---|---|---|---|
arcsine | y = arcsin x | x = sin y | −1 ≤ x ≤ 1 | −π/2 ≤ y ≤ π/2 | −90° ≤ y ≤ 90° |
arccosine | y = arccos x | x = cos y | −1 ≤ x ≤ 1 | 0 ≤ y ≤ π | 0° ≤ y ≤ 180° |
arctangent | y = arctan x | x = tan y | அனைத்து மெய்யெண்கள் | −π/2 < y < π/2 | −90° < y < 90° |
arccotangent | y = arccot x | x = cot y | அனைத்து மெய்யெண்கள் | 0 < y < π | 0° < y < 180° |
arcsecant | y = arcsec x | x = sec y | x ≤ −1 அல்லது 1 ≤ x | 0 ≤ y < π/2 அல்லது π/2 < y ≤ π | 0° ≤ y < 90° or 90° < y ≤ 180° |
arccosecant | y = arccsc x | x = csc y | x ≤ −1 அல்லது 1 ≤ x | −π/2 ≤ y < 0 அல்லது 0 < y ≤ π/2 | -90° ≤ y < 0° அல்லது 0° < y ≤ 90° |
x ஒரு சிக்கலெண் எனில் y -ன் வீச்சு x -ன் மெய்ப்பகுதிக்கு மட்டுமே பொருந்தும்.
sin−1, cos−1,.... ஆகிய குறியீடுகள் பல இடங்களில் arcsin, arccos, ... ஆகியவற்றுக்குப் பதிலாக பயன்படுத்தப்படுகின்றன. ஆனால் இக்குறியீடுகளால் முக்கோணவியல் சார்புகளின் பெருக்கல் தலைகீழிகளுக்கும் நேர்மாறுச் சார்புகளுக்குமிடையே குழப்பம் ஏற்படலாம்.
நேர்மாறு முக்கோணவியல் சார்புகளுக்கிடையே உள்ள தொடர்புகள்



நிரப்பு கோணங்கள
எதிர்ம கோணங்கள்:
தலைகீழிக் கோணங்கள்:
சைன் அட்டவணையின் ஒரு பகுதி மட்டும் நம்மிடம் இருந்தால்:
இங்கு ஒரு சிக்கல் எண்ணின் வர்க்கமூலம் பயன்படுத்தப்பட்டால், நேர்ம மெய்ப்பகுதி கொண்ட மூலம் எடுத்துக் கொள்ளப்படும்.(அல்லது வர்க்கம் எதிர்ம மெய்ப்பகுதி கொண்டிருந்தால் நேர்ம கற்பனைபகுதி கொண்ட மூலம் எடுத்துக் கொள்ளப்படும்.).
டேன்ஜெண்டின் அரைக்கோண வாய்ப்பாடு:
, -லிருந்து:
முக்கோணவியல் சார்புகளுக்கும் நேர்மாறு முக்கோணவியல் சார்புகளுக்கும் இடையே உள்ள தொடர்புகள்
பொதுத்தீர்வுகள்
ஒவ்வொரு முக்கோணவியல் சார்பும் அதன் கோணத்தின் மெய்ப்பகுதியில் காலமுறைமை உடையதாக உள்ளது. ஒவ்வொன்றும் 2π அளவு இடைவெளியில் தனது அனைத்து மதிப்புகளையும் இருமுறை அடைகின்றது.
- சைன் மற்றும் கோசீக்கெண்ட், தங்களது கால அளவை 2πk − π/2 (k ஒரு முழு எண்) -ல் ஆரம்பித்து 2πk + π/2 -ல் முடிக்கின்றன. மீண்டும் எதிர்வழியாக 2πk + π/2 -லிருந்து ஆரம்பித்து 2πk + 3π/2 -ல் முடிக்கின்றன.
- கோசைன் மற்றும் சீக்கெண்ட், தங்களது கால அளவை 2πk -லிருந்து ஆரம்பித்து 2πk + π -ல் முடித்து மீண்டும் எதிர்வழியாக 2πk + π -லிருந்து ஆரம்பித்து 2πk + 2π -ல் முடிக்கின்றன.
- டேன்ஜெண்ட், தனது கால அளவை 2πk − π/2, -லிருந்து ஆரம்பித்து 2πk + π/2 -ல் முடித்துப் பின் மீண்டும், அதேபோல (முன்னோக்கி) 2πk + π/2-லிருந்து 2πk + 3π/2 -ல் முடிக்கின்றது .
- கோடேன்ஜெண்ட், தனது கால அளவை 2πk-லிருந்து 2πk + π -ல் முடித்துப் பின் மீண்டும் அதேமாதிரி (முன்னோக்கி) 2πk + π -லிருந்து 2πk + 2π -ல் முடிக்கிறது..
பொது நேர்மாறுகளில் காலமுறைமை பிரதிபலிக்கப்படுகிறது. (இங்கு k ஏதேனும் ஒரு முழு எண்)
நேர்மாறு முக்கோணவியல் சார்புகளின் வகைக்கெழுக்கள்
x -ன் மெய் மற்றும் சிக்கலெண் மதிப்புகளுக்கு எளிய வகைக்கெழுக்கள்:
x -ன் மெய் மதிப்புகளுக்கு மட்டும்:
வகையிடலின் ஒரு எடுத்துக்காட்டு:
எனில்,
வரையறுத்த தொகையீடுகளாக
x = 1 ஆகும் போது எல்லைக்குட்பட்ட ஆட்களங்களைக் கொண்ட தொகையீடுகள், முறையற்ற தொகையீடுகளாகும் (improper integrals). ஆனாலும் நன்கு வரையறுக்கப்பட்டவையாக அமையும்.
முடிவிலாத் தொடர்களாக
நேர்மாறு முக்கோணவியல் சார்புகளைப் பின்வருமாறு முடிவிலாத் தொடர்களாகக் காணலாம்:
arctan -க்கு ஆய்லரால் இதைவிட பயனுள்ளதொரு முடிவிலாத் தொடர் கண்டுபிடிக்கப்பட்டது:
(இக்கூட்டுதொகையில் n= 0 -ன் உறுப்பு வெற்றுப் பெருக்கல்பலன் (empty product). இதன் மதிப்பு 1.)
இதனையே பின்வருமாறு மாற்றி எழுதலாம்:
நேர்மாறு முக்கோணவியல் சார்புகளின் வரையறாத் தொகையீடுகள்
x -ன் மெய் மற்றும் சிக்கலெண் மதிப்புகளுக்கு:
x ≥ 1 ஆகவுள்ள மெய்மதிப்புகளுக்கு:
இவற்றைப் பகுதி தொகையிடல் மூலம் பெறலாம்.
எடுத்துக்காட்டு
பகுதி தொகையிடலில்:
,
தொகையிடலின் பிரதியிடல் முறையைப் பயன்படுத்த:
x -க்கு மீண்டும் பிரதியிட:
மடக்கை வடிவங்கள்
சிக்கலெண் மடக்கைகள் மூலமாகவும் நேர்மாறு முக்கோணவியல் சார்புகளை எழுதலாம். இதனால் இச்சார்புகளின் ஆட்களங்கள் சிக்கலெண் தளத்திற்கு நீட்டிக்கப்படுகிறது.
எடுத்துக்காட்டு
- -ஐப் பின்வருமாறு நிறுவலாம்.
(சைன் சார்பின் அடுக்குக்குறி வரையறை)
- என்க:
(நேர்ம பகுதி எடுத்துக் கொள்ளப்ப்படுகிறது.)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
வெளி இணைப்புகள்
- Weisstein, Eric W., "Inverse Trigonometric Functions", MathWorld.
- Weisstein, Eric W., "Inverse Tangent", MathWorld.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.