குவிவுப் பல்கோணம்
From Wikipedia, the free encyclopedia
குவிவுப் பல்கோணம் (convex polygon) என்பது, தனக்குத்தானே வெட்டிக் கொள்ளாத எளிய பல்கோணம் ஆகும். இப்பல்கோணத்தின் வரம்பின் மீதமையும் எந்த இரு புள்ளிகளையும் இணைக்கும் கோட்டுத்துண்டு பல்கோணத்திற்கு வெளியில் செல்லாது. அதாவது குவிவுப் பல்கோணம், உட்புறத்தைக் குவிவுக் கணமாகக் கொண்ட எளிய பல்கோணமாக இருக்கும்.[1] ஒரு குவிவுப் பல்கோணத்தின் அனைத்து உட்கோணங்களும் 180 பாகையைவிடக் குறைந்த அல்லது சமமான அளவுள்ளவையாகும். ஒரு கண்டிப்பான குவிவுப் பல்கோணத்தின் உட்கோணங்கள் எல்லாம் 180 பாகையைவிடக் குறைந்த அளவாக இருக்கும்.

குவிவாக இல்லாத பல்கோணம் குழிவுப் பல்கோணம் எனப்படும்.
பண்புகள்
ஒரு எளிய பல்கோணத்தின் குவிவுத்தன்மைக்கான பண்புகள்:
- ஒவ்வொரு உட்கோணத்தின் அளவும் 180 பாகைக்குக் குறைந்ததாகவோ அல்லது சமமானதாகவோ இருக்கும்.
- பல்கோணத்தினுள் அல்லது வரம்பின் மேலமையும் இரு புள்ளிகளை இணைக்கும் கோட்டுத்துண்டின் மேலுள்ள ஒவ்வொரு புள்ளியும் பல்கோணத்தின் உட்புறம் அல்லது வரம்பின் மீது இருக்கும்.
- பல்கோணத்தின் ஒவ்வொரு விளிம்பாலும் வரையறுக்கப்படும் அரைத்தளத்தில் அப்பல்கோணம் முழுவதுமாக அடங்கியிருக்கும்.
- ஒவ்வொரு விளிம்புக்கும், அவ்விளிம்பாக அமையும் கோட்டின் ஒரே பக்கத்தில் பல்கோணத்தின் அனைத்து உட்புள்ளிகளும் அமையும்.
- ஒவ்வொரு உச்சியிலும் அமையும் கோணத்தின் கரங்களின் மீதோ அல்லது உட்புறமோ பல்கோணத்தின் மற்ற உச்சிகள் அமைந்திருக்கும்.
கூடுதல் பண்புகள்:
- இரு குவிவுப் பல்கோணங்களின் வெட்டும் ஒரு குவிவுப் பல்கோணமாக இருக்கும்.
- ஹெல்லியின் தேற்றம்: குறைந்தபட்சம் மூன்று குவிவுப் பல்கோணங்கள் கொண்ட ஒரு பல்கோணத்தொகுப்பில், ஒவ்வொரு மூன்று பல்கோணங்களின் வெட்டு வெற்றற்றதாக இருந்தால், அந்த முழுத் தொகுப்பின் வெட்டும் வெற்றற்றதாக இருக்கும்.
- கிரெயின்-மில்மேன் தேற்றம்: ஒரு குவிவுப் பல்கோணம், அதன் உச்சிகளின் குவிவு மேலோடாக (convex hull). அதாவது குவிவுப் பல்கோணம் முழுவதுமாக அதன் உச்சிகளால் வரையறுக்கப்படுகிறது. பல்கோணத்தின் முனைகளைக் கொண்டு பல்கோணத்தின் முழு வடிவையும் மீளப்பெறலாம்.
- ஒரு குவிவுப் பல்கோணத்தினுள் அமையும் முக்கோணங்களுக்குள், மிகப் பெரிய பரப்பளவு கொண்டதாகவும் பல்கோணத்தின் உச்சிகளில் மூன்றை அதன் உச்சிகளாகக் கொண்டதாகவும் ஒரு முக்கோணம் இருக்கும்.[2]
- A பரப்பளவு கொண்ட குவிவுப் பல்கோணத்தை அதிகபட்சம் 2A பரப்பளவுள்ள முக்கோணத்துக்குள் வரையலாம். பல்கோணம் இணைகரமாக இருந்தால் அம்முக்கோணத்தின் பரப்பளவு 2A க்குச் சமமாக இருக்கும்.[3]
- ஒரு தளத்திலமைந்த ஒரு குவிவு வடிவம் C எனில், அதனுள் வரையப்படும் செவ்வகம் r இன் ஒத்தநிலை வடிவம் R , C இன் சூழ்தொடு வடிவாகவும், ஒத்தநிலை விகிதம் அதிகபட்சம் 2 ஆகவும் இருக்கும். மேலும் .[4]
- ஒரு குவிவுப் பல்கோணத்தின் சுற்றளவை ஆல் வகுக்கக் கிடைக்கும் அளவு அப்பல்கோணத்தின் சராசரி அகலமாக இருக்கும். எனவே ஒரு குவிவுப் பல்கோணத்தின் அகலம், அப்பல்கோணத்தின் சுற்றளவுக்குச் சமமான சுற்றளவு கொண்ட வட்டத்தின் விட்டமாக இருக்கும்.[5]
ஒரு வட்டத்தினுள், பல்கோணத்தின் உச்சிகள் வட்ட வளைவரை மேல் அமையுமாறு வரையப்படும் ஒவ்வொரு பல்கோணமும் தனக்குத்தானே வெட்டிக்கொள்ளாத ஒவ்வொரு பல்கோணமும் குவிவுப் பல்கோணமாகும். ஆனால் குவிவுப் பல்கோணங்கள் ஒவ்வொன்றையும் வட்டத்துக்குள் வரையமுடியாது.
கண்டிப்பான குவிவு
ஒரு எளிய பல்கோணத்தின் கண்டிப்பான குவிவுத்தன்மைக்கானப் பண்புகள்:
- ஒவ்வொரு உட்கோணமும் கண்டிப்பாக 180 பாகைகளை விடக் குறைவானதாக இருக்கும்.
- பல்கோணத்தின் உட்புறத்திலமையும் இரு புள்ளிகளை இணைக்கும் கோட்டுத்துண்டு அல்லது பல்கோணத்தின் வரம்பின் மீது ஆனால் ஒரே விளிம்பில் அமையாத இரு புள்ளிகளை இணைக்கும் கோட்டுத்துண்டு ஒவ்வொன்றும் கண்டிப்பாகப் பல்கோணத்தின் உட்புறத்தில் அமையும்.
- ஒவ்வொரு விளிம்புக்கும், பல்கோணத்தின் உட்புறம் அல்லது அந்தக் குறிப்பிட்ட விளிம்பு மேல் இல்லாத ஆனால் பல்கோணத்தின் வரம்பின் மீதமையும் புள்ளிகள் எல்லாம் அக்குறிப்பிட்ட விளிம்பை வரையறுக்கும் கோட்டுக்கு ஒரேபக்கத்தில் அமைகின்றன
- ஒவ்வொரு உச்சியிலும் உள்ள கோணத்துக்குள் பல்கோணத்தின் மற்ற உச்சிகள் அடங்கியிருக்கும்.
மேற்கோள்கள்
வெளியிணைப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.